run_stable_speech_training.py 65.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

""" Train a text-to-speech model using 🤗 Transformers Seq2SeqTrainer"""

import functools
import json
import logging
import os
import re
import sys
Yoach Lacombe's avatar
Yoach Lacombe committed
25
import shutil
26
27
import warnings
import math
Yoach Lacombe's avatar
Yoach Lacombe committed
28
import time
29
30
from multiprocess import set_start_method

31

Yoach Lacombe's avatar
Yoach Lacombe committed
32
import evaluate
33
from tqdm import tqdm
Yoach Lacombe's avatar
Yoach Lacombe committed
34
from pathlib import Path
35
from dataclasses import dataclass, field
Yoach Lacombe's avatar
Yoach Lacombe committed
36
from typing import Dict, List, Optional, Union, Set
37
38
39
40

import datasets
import numpy as np
import torch
41
42
from torch.utils.data import DataLoader

43
44
from datasets import DatasetDict, load_dataset, Dataset, IterableDataset, interleave_datasets, concatenate_datasets

Yoach Lacombe's avatar
Yoach Lacombe committed
45
from huggingface_hub import Repository, create_repo
46
47
48
49
import transformers
from transformers import (
    AutoFeatureExtractor,
    AutoModel,
Yoach Lacombe's avatar
Yoach Lacombe committed
50
    AutoModelWithLMHead,
51
52
53
54
55
56
    AutoProcessor,
    AutoTokenizer,
    HfArgumentParser,
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
)
Yoach Lacombe's avatar
Yoach Lacombe committed
57
58
59
from transformers.trainer_utils import is_main_process
from transformers import pipeline
from transformers.optimization import get_scheduler
60
61
62
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from transformers.integrations import is_wandb_available
Yoach Lacombe's avatar
add DAC  
Yoach Lacombe committed
63
64
65
66
67
68
from transformers import AutoConfig, AutoModel
from stable_speech import DACConfig, DACModel

AutoConfig.register("dac", DACConfig)
AutoModel.register(DACConfig, DACModel)

69
70
71
72

from accelerate import Accelerator
from accelerate.utils import set_seed

73

74
from stable_speech import StableSpeechForConditionalGeneration, StableSpeechConfig, apply_delay_pattern_mask, build_delay_pattern_mask
75

Yoach Lacombe's avatar
Yoach Lacombe committed
76
77
if is_wandb_available():
    from wandb import Audio
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92



# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")

require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")


logger = logging.getLogger(__name__)


def list_field(default=None, metadata=None):
    return field(default_factory=lambda: default, metadata=metadata)

Yoach Lacombe's avatar
Yoach Lacombe committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
_RE_CHECKPOINT = re.compile(r"^checkpoint-(\d+)-epoch-(\d+)$")

def get_last_checkpoint(folder):
    content = os.listdir(folder)
    checkpoints = [
        path
        for path in content
        if _RE_CHECKPOINT.search(path) is not None and os.path.isdir(os.path.join(folder, path))
    ]
    if len(checkpoints) == 0:
        return
    return os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0])))

def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[str]:
    """Helper function to sort saved checkpoints from oldest to newest."""
    ordering_and_checkpoint_path = []

    glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]

    for path in glob_checkpoints:
        regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
        if regex_match is not None and regex_match.groups() is not None:
            ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

    checkpoints_sorted = sorted(ordering_and_checkpoint_path)
    checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
    return checkpoints_sorted

def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint") -> None:
    """Helper function to delete old checkpoints."""
    if save_total_limit is None or save_total_limit <= 0:
        return
    # Check if we should delete older checkpoint(s)
    checkpoints_sorted = sorted_checkpoints(output_dir=output_dir, checkpoint_prefix=checkpoint_prefix)
    if len(checkpoints_sorted) <= save_total_limit:
        return

    number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
    checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
    for checkpoint in checkpoints_to_be_deleted:
        logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
        shutil.rmtree(checkpoint, ignore_errors=True)

def log_metric(
    accelerator,
    metrics: Dict,
    train_time: float,
    step: int,
    epoch: int,
    learning_rate: float = None,
    prefix: str = "train",
):
    """Helper function to log all training/evaluation metrics with the correct prefixes and styling."""
    log_metrics = {}
    for k, v in metrics.items():
        log_metrics[f"{prefix}/{k}"] = v
    log_metrics[f"{prefix}/time"] = train_time
    log_metrics[f"{prefix}/epoch"] = epoch
    if learning_rate is not None:
        log_metrics[f"{prefix}/learning_rate"] = learning_rate
    accelerator.log(log_metrics, step=step)

def log_pred(
    accelerator,
    pred_descriptions: List[str],
    pred_prompts: List[str],
    transcriptions: List[str],
    audios: List[torch.Tensor],
    sampling_rate: int,
    step: int,
    prefix: str = "eval",
    num_lines: int = 200000,
):
    """Helper function to log target/predicted transcriptions to weights and biases (wandb)."""
    if accelerator.is_main_process:
        wandb_tracker = accelerator.get_tracker("wandb")
        # pretty name for current step: step 50000 -> step 50k
        cur_step_pretty = f"{int(step // 1000)}k" if step > 1000 else step
        prefix_pretty = prefix.replace("/", "-")

        # convert str data to a wandb compatible format
        str_data = [[pred_descriptions[i], pred_prompts[i], transcriptions[i]] for i in range(len(pred_descriptions))]
        # log as a table with the appropriate headers
        wandb_tracker.log_table(
            table_name=f"predictions/{prefix_pretty}-step-{cur_step_pretty}",
            columns=["Target descriptions", "Target prompts", "Predicted transcriptions"],
            data=str_data[:num_lines],
            step=step,
            commit=False,
        )
        
        # wandb can only loads 100 audios per step
        wandb_tracker.log({
                "Speech samples": [
                    Audio(
                        audio,
                        caption=f"{pred_prompts[i]} --- DESCRIPTION: {pred_descriptions[i]}",
                        sample_rate=sampling_rate,
                    )
                    for (i, audio) in enumerate(audios[:min(len(audios), 100)])
                ]},
                step=step)
195
196
197
198
199

#### ARGUMENTS

class StableSpeechTrainer(Seq2SeqTrainer):
    def _pad_tensors_to_max_len(self, tensor, max_length):
Yoach Lacombe's avatar
Yoach Lacombe committed
200
201
        if self.model.config.pad_token_id is not None:
            pad_token_id = self.model.config.pad_token_id
202
        else:
Yoach Lacombe's avatar
Yoach Lacombe committed
203
            raise ValueError("Pad_token_id must be set in the configuration of the model, in order to pad tensors")
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

        padded_tensor = pad_token_id * torch.ones(
            (tensor.shape[0], max_length, tensor.shape[2]), dtype=tensor.dtype, device=tensor.device
        )
        padded_tensor[:, : tensor.shape[1]] = tensor
        return padded_tensor


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
    # TODO: pretrain from scratch
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    feature_extractor_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained feature extractor name or path if not the same as model_name"}
    )
    description_tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained description tokenizer name or path if not the same as model_name"}
    )
    prompt_tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained prompt tokenizer name or path if not the same as description_tokenizer_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    pad_token_id: int = field(
        default=None,
        metadata={"help": "If specified, change the model pad token id."},
    )
    decoder_start_token_id: int = field(
        default=None,
        metadata={"help": "If specified, change the model decoder start token id."},
    )
    freeze_text_encoder: bool = field(
        default=False,
        metadata={"help": "Whether to freeze the text encoder."},
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
257
258
259
260
261
262
263
264
    do_sample: bool = field(
        default=False,
        metadata={"help": "Whether to do sampling or greedy decoding."},
    )
    max_length: int = field(
        default=400, # TODO
        metadata={"help": "Whether to do sampling or greedy decoding."},
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
265
    bandwidth: float = field(
Yoach Lacombe's avatar
Yoach Lacombe committed
266
        default=6, # TODO
Yoach Lacombe's avatar
Yoach Lacombe committed
267
268
        metadata={"help": "Audio encoder bandwidth."},
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
269
    
270
271
272


@dataclass
Yoach Lacombe's avatar
Yoach Lacombe committed
273
class DataTrainingArguments:
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    train_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
            " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
    )
    train_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset configs by a '+' symbol."
        },
    )
    train_split_name: str = field(
        default="train",
        metadata={
            "help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
        },
    )
    train_dataset_samples: str = field(
        default=None,
        metadata={
            "help": "Number of samples in the training data. Load and combine "
            "multiple datasets by separating dataset samples by a '+' symbol."
        },
    )
    train_metadata_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the metadata training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
            " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
    )
    eval_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified."
        },
    )
    eval_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified"
        },
    )
    eval_split_name: str = field(
        default="test",
        metadata={
            "help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'"
        },
    )
    eval_metadata_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the metadata training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
            " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
    )
    target_audio_column_name: str = field( # TODO
        default="audio",
        metadata={"help": "The name of the dataset column containing the target audio data. Defaults to 'audio'"},
    )
    description_column_name: str = field( #TODO
        default=None,
        metadata={"help": "The name of the dataset column containing the text data. Defaults to 'None'."},
    )
    prompt_column_name: str = field( #TODO
        default=None,
        metadata={"help": "The name of the dataset column containing the text data. Defaults to 'None'."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of validation examples to this "
                "value if set."
            )
        },
    )
    max_duration_in_seconds: float = field(
        default=35.0,
        metadata={
            "help": (
                "Filter audio files that are longer than `max_duration_in_seconds` seconds to"
                " 'max_duration_in_seconds`"
            )
        },
    )
    min_duration_in_seconds: float = field(
        default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
    )
    preprocessing_only: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether to only do data preprocessing and skip training. This is especially useful when data"
                " preprocessing errors out in distributed training due to timeout. In this case, one should run the"
                " preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
400
401
                " can consequently be loaded in distributed training."
                " In this training script, `save_to_disk` must be set to the path in which the dataset should be saved. "
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
            )
        },
    )
    token: str = field(
        default=None,
        metadata={
            "help": (
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
            )
        },
    )
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
        },
    )
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
                "execute code present on the Hub on your local machine."
            )
        },
    )
    add_audio_samples_to_wandb: bool = field(
        default=False,
        metadata={
            "help": "If set and if `wandb` in args.report_to, will add generated audio samples to wandb logs."
        }
    )
    id_column_name: str = field(
        default=None,
        metadata={
            "help": "id column name."
        }
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
442
443
444
445
    wandb_project: str = field(
        default="stable-speech",
        metadata={"help": "The name of the wandb project."},
    )
446
447
448
449
450
451
    save_to_disk: str = field(
        default=None,
        metadata={
            "help": "If set, will save the dataset to this path if this is an empyt folder. If not empty, will load the datasets from it."
        }
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
452
453
454
455
456
457
458
459
460
461
462
463
    
@dataclass
class StableSpeechTrainingArguments(Seq2SeqTrainingArguments):
    dtype: Optional[str] = field(
        default="float32",
        metadata={
            "help": (
                "The data type (dtype) in which to run training. One of `float32` (full-precision), "
                "`float16` or `bfloat16` (both half-precision)."
            )
        },
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
464
465
466
467
468
469
470
471
    audio_encode_per_device_eval_batch_size: int = field(
        default=8,
        metadata={
            "help": (
                "TODO"
            )
        },
    )
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
    
@dataclass
class DataCollatorEncodecWithPadding:
    """
    Data collator that will dynamically pad the inputs received to the longest sequence in the batch.
    """

    feature_extractor: AutoFeatureExtractor
    feature_extractor_input_name: Optional[str] = "input_values"

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
        audios = [torch.tensor(feature["labels"]).squeeze() for feature in features]
        len_audio = [len(audio) for audio in audios]
        
        input_features = {self.feature_extractor_input_name: audios}
        batch = self.feature_extractor.pad(input_features, return_tensors="pt", padding="longest", return_attention_mask=True)
        batch[self.feature_extractor_input_name] = batch[self.feature_extractor_input_name].unsqueeze(1) # add mono-channel 
        batch["padding_mask"] = batch.pop("attention_mask")   
        batch["len_audio"] = torch.tensor(len_audio).unsqueeze(1)
        return batch
494
495
496

    
@dataclass
Yoach Lacombe's avatar
Yoach Lacombe committed
497
class DataCollatorStableSpeechWithPadding:
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    """
    Data collator that will dynamically pad the inputs received.
    Args:
        prompt_tokenizer (:class:`~transformers.AutoTokenizer`)
            The prompt_tokenizer used for proccessing the data.
        description_tokenizer (:class:`~transformers.AutoTokenizer`)
            The description_tokenizer used for proccessing the data.
        audio_feature_extractor (:class:`~transformers.AutoFeatureExtractor`)
            The audio_feature_extractor used for proccessing the data.
        padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
            among:
            * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
              sequence if provided).
            * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
              maximum acceptable input length for the model if that argument is not provided.
            * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
              different lengths).
        pad_to_multiple_of (:obj:`int`, `optional`):
            If set will pad the sequence to a multiple of the provided value.
            This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
            7.5 (Volta).
    """

    prompt_tokenizer: AutoTokenizer
    description_tokenizer: AutoTokenizer
    audio_feature_extractor: AutoFeatureExtractor
    feature_extractor_input_name: Optional[str] = "input_values"
    padding: Union[bool, str] = "longest"
    pad_to_multiple_of: Optional[int] = None

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
        
        
        labels = [torch.tensor(feature["labels"]).transpose(0,1) for feature in features]
        # (bsz, seq_len, num_codebooks)
        labels = torch.nn.utils.rnn.pad_sequence(labels,batch_first=True,padding_value=-100)
        
        input_ids = [{"input_ids": feature["input_ids"]} for feature in features]
        input_ids = self.description_tokenizer.pad(input_ids, return_tensors="pt", padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of)

541
        batch= {"labels":labels, **input_ids}
Yoach Lacombe's avatar
Yoach Lacombe committed
542

543
544
545
        prompt_input_ids = [{"input_ids": feature["prompt_input_ids"]} for feature in features]
        prompt_input_ids = self.prompt_tokenizer.pad(prompt_input_ids, return_tensors="pt", padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of)
        
Yoach Lacombe's avatar
Yoach Lacombe committed
546
        # TODO: check it's been padded on the left
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
        batch["prompt_input_ids"] = prompt_input_ids["input_ids"]
        if "attention_mask" in prompt_input_ids:
            batch["prompt_attention_mask"] = prompt_input_ids["attention_mask"]
        
        if self.feature_extractor_input_name in features[0]:
            # TODO: verify that it works
            input_values = [{self.feature_extractor_input_name: feature[self.feature_extractor_input_name]} for feature in features]
            input_values = self.feature_extractor.pad(input_values, return_tensors="pt")
            
            batch[self.feature_extractor_input_name: input_values]
        
        return batch
    

def convert_dataset_str_to_list(
    dataset_names,
    dataset_config_names,
    metadata_dataset_names=None,
    splits=None,
    dataset_samples=None,
    default_split="train",
):
    if isinstance(dataset_names, str):
        dataset_names = dataset_names.split("+")
        dataset_config_names = dataset_config_names.split("+")
        splits = splits.split("+") if splits is not None else None
        dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None
        metadata_dataset_names = metadata_dataset_names.split("+") if metadata_dataset_names is not None else None

    # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
    if len(dataset_names) != len(dataset_config_names):
        raise ValueError(
            f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(dataset_config_names)} configs."
        )

    if splits is not None and len(splits) != len(dataset_names):
        raise ValueError(
            f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
        )

    if metadata_dataset_names is not None and len(metadata_dataset_names) != len(dataset_names):
        raise ValueError(
            f"Ensure one metadata dataset is passed for each dataset, got {len(dataset_names)} datasets and {len(metadata_dataset_names)} metadata datasets."
        )

    if dataset_samples is not None:
        if len(dataset_samples) != len(dataset_names):
            raise ValueError(
                f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
                f"{len(dataset_samples)} samples."
            )
        dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
    else:
        dataset_samples = [None] * len(dataset_names)

    splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]

    dataset_names_dict = []
    for i, ds_name in enumerate(dataset_names):
        dataset_names_dict.append(
            {
                "name": ds_name,
                "config": dataset_config_names[i],
                "split": splits[i],
                "metadata_dataset_name": metadata_dataset_names[i],
                "samples": dataset_samples[i],
            }
        )
    return dataset_names_dict


def load_multiple_datasets(
620
    accelerator: Accelerator,
621
622
623
624
625
626
627
628
629
630
    dataset_names: Union[List, str],
    dataset_config_names: Union[List, str],
    metadata_dataset_names: Optional[str]=None,
    splits: Optional[Union[List, str]] = None,
    label_column_names: Optional[List] = None,
    stopping_strategy: Optional[str] = "first_exhausted",
    dataset_samples: Optional[Union[List, np.array]] = None,
    streaming: Optional[bool] = False,
    seed: Optional[int] = None,
    id_column_name: Optional[str] = None,
Yoach Lacombe's avatar
Yoach Lacombe committed
631
    columns_to_keep: Optional[Set[str]] = None,
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    **kwargs,
) -> Union[Dataset, IterableDataset]:
    dataset_names_dict = convert_dataset_str_to_list(
        dataset_names, dataset_config_names, metadata_dataset_names, splits, label_column_names, dataset_samples
    )

    if dataset_samples is not None:
        dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
        probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
    else:
        probabilities = None

    all_datasets = []
    # iterate over the datasets we want to interleave
    for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
647
648
649
        with accelerator.main_process_first():
            dataset = load_dataset(
                dataset_dict["name"],
650
651
652
653
654
                dataset_dict["config"],
                split=dataset_dict["split"],
                streaming=streaming,
                **kwargs,
            )
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
            dataset_features = dataset.features.keys()
            
            metadata_dataset_name = dataset_dict["metadata_dataset_name"]
            if metadata_dataset_name is not None:
                metadata_dataset = load_dataset(
                    metadata_dataset_name,
                    dataset_dict["config"],
                    split=dataset_dict["split"],
                    streaming=streaming,
                    **kwargs,
                )
                        
                if id_column_name is not None and id_column_name not in dataset.column_names:
                    raise ValueError(
                        f"id_column_name={id_column_name} but has not been found in the dataset columns"
                        f"- one of {', '.join(list(dataset.column_names))}."
                        )
                if id_column_name is not None and id_column_name not in metadata_dataset.column_names:
                    raise ValueError(
                        f"id_column_name={id_column_name} but has not been found in the metadata dataset columns"
                        f"- one of {', '.join(list(metadata_dataset.column_names))}."
                        )
                elif id_column_name is not None:
                    metadata_dataset = metadata_dataset.rename_column(id_column_name, f"metadata_{id_column_name}")
679
680
                    
                
681
682
683
                metadata_columns_to_remove = set(metadata_dataset.column_names).intersection(set(dataset.column_names))
                metadata_dataset = metadata_dataset.remove_columns(metadata_columns_to_remove)
                dataset = concatenate_datasets([dataset, metadata_dataset], axis=1)
684
                
685
686
687
688
689
                if id_column_name is not None:
                    if len(dataset.filter(lambda id1, id2: id1!=id2, input_columns=[id_column_name, f"metadata_{id_column_name}"])) != 0:
                        raise ValueError(f"Concatenate didn't work. Some ids don't correspond on dataset {dataset_dict['name']}")
                    
                dataset_features = dataset.features.keys()
Yoach Lacombe's avatar
Yoach Lacombe committed
690

691
692
            if columns_to_keep is not None:
                dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
693
694
695
696
697
698
699
700
701
702
703
704
705
706
        all_datasets.append(dataset)

    if len(all_datasets) == 1:
        # we have a single dataset so just return it as is
        return all_datasets[0]

    if streaming:
        interleaved_dataset = interleave_datasets(
            all_datasets,
            stopping_strategy=stopping_strategy,
            probabilities=probabilities,
            seed=seed,
        )
    else:
707
708
        with accelerator.main_process_first():
            interleaved_dataset = concatenate_datasets(all_datasets)
709
710
711
712
713
714
715
716
717
718

    return interleaved_dataset

    
    
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

Yoach Lacombe's avatar
Yoach Lacombe committed
719
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, StableSpeechTrainingArguments))
720
721
722
723
724
725
726
727
728
729
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_stable_speech", model_args, data_args)
730
    
Yoach Lacombe's avatar
Yoach Lacombe committed
731
732
733
734
735
736
    if training_args.dtype == "float16":
        mixed_precision = "fp16"
    elif training_args.dtype == "bfloat16":
        mixed_precision = "bf16"
    else:
        mixed_precision = "no"
737

Yoach Lacombe's avatar
Yoach Lacombe committed
738
739
740
741
742
743
744
745
746
747
748
    accelerator = Accelerator(
        gradient_accumulation_steps=training_args.gradient_accumulation_steps,
        mixed_precision=mixed_precision,
        log_with=training_args.report_to,
        project_dir=training_args.output_dir,
    )
    
    accelerator.init_trackers(project_name=data_args.wandb_project)
    
    
    # Detecting last checkpoint and eventually continue from last checkpoint
749
750
751
752
753
754
755
756
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
Yoach Lacombe's avatar
Yoach Lacombe committed
757
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
758
759
760
761
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
Yoach Lacombe's avatar
Yoach Lacombe committed
762
    
763
764
765
766
767
768
769

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
770
    logger.setLevel(logging.INFO if accelerator.is_main_process else logging.WARN)
771

Yoach Lacombe's avatar
Yoach Lacombe committed
772
    # Log a small summary on each proces
773
774
775
776
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
777
778
779
780

    # Set the verbosity to info of the Transformers logger (on main process only)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
781
        transformers.utils.logging.set_verbosity_info()
Yoach Lacombe's avatar
Yoach Lacombe committed
782
783
784
785
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

786

787
788
789
790
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)
791
    num_workers = data_args.preprocessing_num_workers
792
793

    # 1. First, let's load the dataset
Yoach Lacombe's avatar
Yoach Lacombe committed
794
    
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
    if data_args.save_to_disk is not None:
        os.makedirs(data_args.save_to_disk, exist_ok=True)
    
    # assume that the dataset has been saved to `save_to_disk` if the latter is not empty
    dataset_was_precomputed = len(os.listdir(data_args.save_to_disk)) > 0
    if dataset_was_precomputed:
        vectorized_datasets = datasets.load_from_disk(data_args.save_to_disk)
    else:    
        raw_datasets = DatasetDict()

        columns_to_keep = {
            "target_audio_column_name": data_args.target_audio_column_name,
            "prompt_column_name": data_args.prompt_column_name
        }
        if data_args.description_column_name is not None:
            columns_to_keep["description_column_nam"] = data_args.description_column_name
            
        if training_args.do_train:
            raw_datasets["train"] = load_multiple_datasets(
                accelerator,
                data_args.train_dataset_name,
                data_args.train_dataset_config_name,
                metadata_dataset_names=data_args.train_metadata_dataset_name,
                splits=data_args.train_split_name,
                dataset_samples=data_args.train_dataset_samples,
                seed=training_args.seed,
                cache_dir=model_args.cache_dir,
                num_proc=data_args.preprocessing_num_workers,
                id_column_name=data_args.id_column_name,
                columns_to_keep=columns_to_keep.values(),
                # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
            )
            
            for key in columns_to_keep:
                if columns_to_keep[key] not in raw_datasets["train"].column_names:
                    raise ValueError(
                        f"--{key} '{columns_to_keep[key]}' not found in dataset '{data_args.train_dataset_name}'."
                        f" Make sure to set `--{key}` to the correct audio column - one of"
                        f" {', '.join(raw_datasets['train'].column_names)}."
                    )        

            if data_args.max_train_samples is not None:
                raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))

        if training_args.do_eval:
            raw_datasets["eval"] = load_multiple_datasets(
                accelerator,
                data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
                data_args.eval_dataset_config_name if data_args.eval_dataset_config_name else data_args.train_dataset_config_name,
                metadata_dataset_names=data_args.eval_metadata_dataset_name,
                splits=data_args.eval_split_name,
                cache_dir=model_args.cache_dir,
                num_proc=data_args.preprocessing_num_workers,
                id_column_name=data_args.id_column_name,
                columns_to_keep=columns_to_keep.values(),
                # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
            )
852

853
854
            if data_args.max_eval_samples is not None:
                raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
855
856


857
858
    # 2. Next, let's load the config as we might need it to create
    # load config TODO: add the option to create the config from scratch
859
860
861
862
863
864
865
866
    config = StableSpeechConfig.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
    )
    
    # update pad token id and decoder_start_token_id
Yoach Lacombe's avatar
Yoach Lacombe committed
867
    # TODO: verify if this makes sense, maybe should do it for model.decoder
868
869
870
871
872
    config.update({
        "pad_token_id": model_args.pad_token_id if model_args.pad_token_id is not None else model.config.pad_token_id,
        "decoder_start_token_id": model_args.decoder_start_token_id if model_args.decoder_start_token_id is not None else model.config.decoder_start_token_id,
    })

873
    # 3. Now we can instantiate the feature extractor, tokenizers and model
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
    # Note for distributed training, the .from_pretrained methods guarantee that only
    # one local process can concurrently download model & vocab.
    
    # load feature extractor
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name or model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
    )
    
    # load prompt tokenizer
    prompt_tokenizer = AutoTokenizer.from_pretrained(
        model_args.prompt_tokenizer_name or model_args.description_tokenizer_name or model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
891
        use_fast=model_args.use_fast_tokenizer,
Yoach Lacombe's avatar
Yoach Lacombe committed
892
        padding_side="left", # prompt has to be padded on the left bc it's preprend to codebooks hidden states
893
    )
894
        
895
896
897
898
899
900
    # load description tokenizer
    description_tokenizer = AutoTokenizer.from_pretrained(
        model_args.description_tokenizer_name or model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
901
        use_fast=model_args.use_fast_tokenizer,
902
903
    )
    
904
905
906
907
908
909
    if model_args.use_fast_tokenizer:
        logger.warning("Disabling fast tokenizer warning: https://github.com/huggingface/transformers/blob/main/src/transformers/tokenization_utils_base.py#L3231-L3235")
        prompt_tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
        description_tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True

    
910
911
912
913
914
915
916
917
918
919
    # create model + TODO: not from_pretrained probably
    model = StableSpeechForConditionalGeneration.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        config=config,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
    )
    
    
920
    # 4. Now we preprocess the datasets including loading the audio, resampling and normalization
921
922
923
924
925
    # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
    # so that we just need to set the correct target sampling rate and normalize the input
    # via the `feature_extractor`
    
    # derive max & min input length for sample rate & max duration
926
927
928
    sampling_rate = feature_extractor.sampling_rate
    max_target_length = data_args.max_duration_in_seconds * sampling_rate
    min_target_length = data_args.min_duration_in_seconds * sampling_rate
929
930
931
932
    target_audio_column_name = data_args.target_audio_column_name
    description_column_name = data_args.description_column_name
    prompt_column_name = data_args.prompt_column_name
    feature_extractor_input_name = feature_extractor.model_input_names[0]
Yoach Lacombe's avatar
Yoach Lacombe committed
933
934
    audio_encoder_pad_token_id = config.decoder.pad_token_id
    audio_encoder_eos_token_id = config.decoder.eos_token_id
Yoach Lacombe's avatar
Yoach Lacombe committed
935
936
937
    audio_encoder_bos_token_id = model.generation_config.decoder_start_token_id
    max_length = model.generation_config.max_length
    num_codebooks = model.decoder.config.num_codebooks
Yoach Lacombe's avatar
Yoach Lacombe committed
938
    bandwidth = model_args.bandwidth
939
    
940
941
942
943
944
945
    if not dataset_was_precomputed:
        # resample target audio
        raw_datasets = raw_datasets.cast_column(
            target_audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate)
        )
        
946

947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
        # Preprocessing the datasets.
        # We need to read the audio files as arrays and tokenize the texts.
        def pass_through_processors(batch):
            # load audio
            if description_column_name is not None:
                text = batch[description_column_name]
                batch["input_ids"] = description_tokenizer(text.strip())["input_ids"]
                
            if prompt_column_name is not None:
                text = batch[prompt_column_name]
                batch["prompt_input_ids"] = prompt_tokenizer(text.strip())["input_ids"]

            # load audio
            target_sample = batch[target_audio_column_name]
            labels = feature_extractor(target_sample["array"], sampling_rate=target_sample["sampling_rate"])
            batch["labels"] = labels["input_values"]
963
            
964
965
966
            # take length of raw audio waveform
            batch["target_length"] = len(target_sample["array"].squeeze())
            return batch
967

968
969
970
971
972
973
974
        with accelerator.main_process_first():
            vectorized_datasets = raw_datasets.map(
                pass_through_processors,
                remove_columns=next(iter(raw_datasets.values())).column_names,
                num_proc=num_workers,
                desc="preprocess datasets",
            )
975

976
977
            def is_audio_in_length_range(length):
                return length > min_target_length and length < max_target_length
978

979
980
981
982
983
984
            # filter data that is shorter than min_target_length
            vectorized_datasets = vectorized_datasets.filter(
                is_audio_in_length_range,
                num_proc=num_workers,
                input_columns=["target_length"],
            )
985

986
987
        # 5. Now we encode the audio labels with encodec.
        # We use Accelerate to perform distributed inference
988

989
        logger.info("*** Encode target audio with encodec ***")
990
        
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
        # no need to prepare audio_decoder because used for inference without mixed precision
        # see: https://huggingface.co/docs/accelerate/main/en/package_reference/accelerator#accelerate.Accelerator.prepare
        audio_decoder = model.audio_encoder

        encoder_data_collator = DataCollatorEncodecWithPadding(feature_extractor, feature_extractor_input_name)

        def apply_audio_decoder(batch):
            len_audio = batch.pop("len_audio")
            audio_decoder.to(batch["input_values"].device).eval()
            with torch.no_grad():
                labels = audio_decoder.encode(**batch, bandwidth=bandwidth)["audio_codes"]
            output = {}
            output["len_audio"] = len_audio
            # (1, bsz, codebooks, seq_len) -> (bsz, seq_len, codebooks)
            output["labels"] = labels.squeeze(0).transpose(1,2)
            output["ratio"] = torch.ones_like(len_audio) * labels.shape[-1] / len_audio.max() 
Yoach Lacombe's avatar
Yoach Lacombe committed
1007
            return output
1008

1009
1010
1011
1012
1013
1014
1015
        for split in vectorized_datasets:
            data_loader = DataLoader(
                vectorized_datasets[split],
                batch_size=training_args.audio_encode_per_device_eval_batch_size,
                collate_fn=encoder_data_collator,
                num_workers=training_args.dataloader_num_workers,
                pin_memory=True,
1016
            )
1017
            data_loader = accelerator.prepare(data_loader)        
1018
            
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
            all_generated_labels = []
            all_ratios = []
            all_lens = []
            for batch in tqdm(data_loader, disable=not accelerator.is_local_main_process):
                generate_labels = apply_audio_decoder(batch)
                generate_labels = accelerator.pad_across_processes(generate_labels, dim=1, pad_index=0)
                generate_labels = accelerator.gather_for_metrics(generate_labels)
                
                all_generated_labels.extend(generate_labels["labels"].cpu())
                all_ratios.extend(generate_labels["ratio"].cpu())
                all_lens.extend(generate_labels["len_audio"].cpu())
                
            # (1, codebooks, seq_len) where seq_len=1
            eos_labels = torch.ones((1, num_codebooks, 1)) * audio_encoder_eos_token_id
            bos_labels = torch.ones((1, num_codebooks, 1)) * audio_encoder_bos_token_id
                
            def postprocess_dataset(input_ids, prompt_input_ids, idx):
                # (1, codebooks, seq_len)
                labels = all_generated_labels[idx].transpose(0,1).unsqueeze(0)
                len_ = int(all_ratios[idx] * all_lens[idx])
                labels = labels[:, :, :len_]
                
                # labels = labels[:, :, :(len_)%10+500] # TODO: change
                
                # add bos
                labels = torch.cat([bos_labels, labels], dim=-1)
                
                labels, delay_pattern_mask = build_delay_pattern_mask(labels, 
                                                        bos_token_id=audio_encoder_bos_token_id,
                                                        pad_token_id=audio_encoder_eos_token_id,
                                                        max_length=labels.shape[-1] + num_codebooks,
                                                        num_codebooks=num_codebooks)
                
                
                # the first ids of the delay pattern mask are precisely labels, we use the rest of the labels mask
                # to take care of EOS
                # we want labels to look like this:
                #  - [B, a, b, E, E, E, E]
                #  - [B, B, c, d, E, E, E]
                #  - [B, B, B, e, f, E, E]
                #  - [B, B, B, B, g, h, E] 
                labels = torch.where(delay_pattern_mask==-1, audio_encoder_eos_token_id, delay_pattern_mask)
                            
                # the first timestamp is associated to a row full of BOS, let's get rid of it
                # we also remove the last timestampts (full of PAD)
                output = {"labels": labels[:, 1:].cpu()}
                output["input_ids"] = input_ids
                output["prompt_input_ids"] = prompt_input_ids
                return output

            # TODO: done multiple times, how to deal with it.
            with accelerator.main_process_first():
                vectorized_datasets[split] = vectorized_datasets[split].map(
                    postprocess_dataset,
                    num_proc=1, # this one is resource consuming if many processor.
                    input_columns=["input_ids", "prompt_input_ids"],
                    desc="Postprocessing labeling",
                    with_indices=True,
                    writer_batch_size=200,
                )

                
        accelerator.free_memory()
        del generate_labels
1083

1084
    
1085
1086
1087
    if data_args.save_to_disk is not None and not dataset_was_precomputed:
        vectorized_datasets.save_to_disk(data_args.save_to_disk)
        logger.info(f"Dataset saved at {data_args.save_to_disk}")
1088
1089
1090
1091
1092
1093

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with ``args.preprocessing_only`` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
    # cached dataset
1094
1095
1096
1097
    if data_args.preprocessing_only and data_args.save_to_disk is None:
        raise ValueError("`preprocessing_only=True` but `save_to_disk` is not set. The latter should indicates where to save the dataset locally.")
    elif data_args.preprocessing_only:
        logger.info(f"Data preprocessing finished. Files save at {data_args.save_to_disk}")
1098
1099
        return
    
Yoach Lacombe's avatar
Yoach Lacombe committed
1100
    
1101
    # 6. Next, we can prepare the training.
Yoach Lacombe's avatar
Yoach Lacombe committed
1102
1103
1104
1105
1106
1107
1108
    
    # enable gradient checkpointing if necessary
    if training_args.gradient_checkpointing:
        model.gradient_checkpointing_enable()

    
    # Let's use word CLAP similary and WER metrics as our evaluation metrics,
1109

Yoach Lacombe's avatar
Yoach Lacombe committed
1110
    # Define evaluation metrics during training, *i.e.* CLAP similarity TODO: allow using another CLAP
1111
1112
    clap = AutoModel.from_pretrained("laion/larger_clap_music_and_speech")
    clap_processor = AutoProcessor.from_pretrained("laion/larger_clap_music_and_speech")
Yoach Lacombe's avatar
Yoach Lacombe committed
1113
    metric = evaluate.load("wer")
1114
1115
    
    
Yoach Lacombe's avatar
Yoach Lacombe committed
1116
1117
1118
    def clap_similarity(texts, audios, device):
        clap_inputs = clap_processor(text=texts, audios=audios, padding=True, return_tensors="pt").to(device)
        clap.to(device)
1119
1120
1121
1122
1123
1124
1125
        text_features = clap.get_text_features(clap_inputs["input_ids"], attention_mask=clap_inputs.get("attention_mask", None))
        audio_features = clap.get_audio_features(clap_inputs["input_features"])
        
        cosine_sim = torch.nn.functional.cosine_similarity(audio_features, text_features, dim=1, eps=1e-8)
        
        return cosine_sim.mean()
    
Yoach Lacombe's avatar
Yoach Lacombe committed
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
    def wer(prompts, audios, device):
        asr_pipeline = pipeline(model="distil-whisper/distil-large-v2", device=device)
        transcriptions = asr_pipeline([{'raw': audio, 'sampling_rate': sampling_rate} for audio in audios])
        
        word_error = 100 * metric.compute(predictions=[t["text"].lower() for t in transcriptions], references=[t.lower() for t in prompts])
        
        return word_error, [t["text"] for t in transcriptions]
        
    
    eval_methods = {"clap": clap_similarity, "wer": wer}
1136

Yoach Lacombe's avatar
Yoach Lacombe committed
1137
1138
    def compute_metrics(audios, descriptions, prompts, device="cpu"):
        input_ids = descriptions
1139
        texts = description_tokenizer.batch_decode(input_ids, skip_special_tokens=True)
Yoach Lacombe's avatar
Yoach Lacombe committed
1140
1141
1142
1143
1144
1145
1146
        prompts = prompt_tokenizer.batch_decode(prompts, skip_special_tokens=True)
        audios = [a.cpu().numpy() for a in audios]
        results = {
            "clap": eval_methods["clap"](texts, audios, device)
        }
        word_error, transcriptions = eval_methods["wer"](prompts, audios, device)
        results["wer"] = word_error
1147

Yoach Lacombe's avatar
Yoach Lacombe committed
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
        return results, texts, prompts, audios, transcriptions
    
    # Define Training Schedule
    # Store some constants
    per_device_train_batch_size = int(training_args.per_device_train_batch_size)
    train_batch_size = per_device_train_batch_size * accelerator.num_processes
    gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
    
    
    if training_args.max_steps < 0:
        num_epochs = int(training_args.num_train_epochs)
        steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
        total_train_steps = steps_per_epoch * num_epochs
    elif training_args.max_steps > 0:
        logger.info("max_steps is given, it will override any value given in num_train_epochs")
        total_train_steps = int(training_args.max_steps)
        # Setting a very large number of epochs so we go as many times as necessary over the iterator.
        num_epochs = sys.maxsize
        steps_per_epoch = total_train_steps

    if training_args.eval_steps is None:
        logger.info(
            f"eval_steps is not set, evaluating at the end of each epoch"
        )
        eval_steps = steps_per_epoch
    else:
        eval_steps = training_args.eval_steps
        
    # Define optimizer, LR scheduler, collator
    optimizer = torch.optim.AdamW(
        params=model.parameters(),
        lr=training_args.learning_rate,
        betas=(training_args.adam_beta1, training_args.adam_beta2),
        eps=training_args.adam_epsilon,
    )
1184

Yoach Lacombe's avatar
Yoach Lacombe committed
1185
1186
1187
1188
    # LR scheduler gets stepped by `num_processes` each time -> account for this in warmup / total steps
    lr_scheduler = get_scheduler(
        name=training_args.lr_scheduler_type,
        optimizer=optimizer,
Yoach Lacombe's avatar
Yoach Lacombe committed
1189
        num_warmup_steps=training_args.get_warmup_steps(total_train_steps) * accelerator.num_processes,
Yoach Lacombe's avatar
Yoach Lacombe committed
1190
1191
        num_training_steps=total_train_steps * accelerator.num_processes,
    )
1192
1193

    # Instantiate custom data collator
Yoach Lacombe's avatar
Yoach Lacombe committed
1194
1195
    data_collator = DataCollatorStableSpeechWithPadding(
        audio_feature_extractor=feature_extractor, feature_extractor_input_name=feature_extractor_input_name, prompt_tokenizer=prompt_tokenizer, description_tokenizer=description_tokenizer
1196
1197
1198
1199
    )
    
    # Freeze Encoders
    model.freeze_encoders(model_args.freeze_text_encoder)
Yoach Lacombe's avatar
Yoach Lacombe committed
1200
1201
1202
    
    # Prepare everything with accelerate
    model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
1203
1204
        

Yoach Lacombe's avatar
Yoach Lacombe committed
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}")
    logger.info("  Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}")
    logger.info("  Gradient accumulation steps =" f" {gradient_accumulation_steps}")
    logger.info(
        f"  Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
    )
    logger.info(f"  Total optimization steps = {total_train_steps}")

    # ======================== Training ================================
    train_time = 0
    train_start = time.time()
    steps_trained_progress_bar = tqdm(
        range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process
    )
    continue_training = True
    epochs_trained = 0
    cur_step = 0

    checkpoint = None
    if training_args.resume_from_checkpoint is not None:
        checkpoint = training_args.resume_from_checkpoint
    elif last_checkpoint is not None:
        checkpoint = last_checkpoint
    
            
    if accelerator.is_main_process:
        if training_args.push_to_hub:
            # Retrieve of infer repo_name
            repo_name = training_args.hub_model_id
            if repo_name is None:
                repo_name = Path(training_args.output_dir).absolute().name
            # Create repo and retrieve repo_id
            repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
            # Clone repo locally
            repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token)

            with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore:
                if "wandb" not in gitignore:
                    gitignore.write("wandb\n")
        elif training_args.output_dir is not None:
            os.makedirs(training_args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()
    
Yoach Lacombe's avatar
Yoach Lacombe committed
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
    # Now save everything to be able to create a single processor later
    # make sure all processes wait until data is saved
    with accelerator.main_process_first():
        # only the main process saves them
        if accelerator.is_main_process:
            # save feature extractor, tokenizer and config
            if model_args.prompt_tokenizer_name is None and model_args.description_tokenizer_name or (model_args.prompt_tokenizer_name==model_args.description_tokenizer_name):
                prompt_tokenizer.save_pretrained(training_args.output_dir)
            else:
                logger.warning("Prompt tokenizer ('{model_args.prompt_tokenizer_name}') and description tokenizer ('{model_args.description_tokenizer_name}') are not the same. Saving only the prompt tokenizer.")
                prompt_tokenizer.save_pretrained(training_args.output_dir)
            
            feature_extractor.save_pretrained(training_args.output_dir)
            config.save_pretrained(training_args.output_dir)
            
    
Yoach Lacombe's avatar
Yoach Lacombe committed
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

    if checkpoint is not None:
        accelerator.load_state(checkpoint)
        # Find num steps and epoch from saved state string pattern
        pattern = r"checkpoint-(\d+)-epoch-(\d+)"
        match = re.search(pattern, checkpoint)
        cur_step = int(match.group(1))
        epochs_trained = int(match.group(2))

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info(f"  Continuing training from epoch {epochs_trained}")
        logger.info(f"  Continuing training from global step {cur_step}")

        steps_trained_progress_bar.update(cur_step)

        for epoch in range(0, epochs_trained):
            vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
1282
            
Yoach Lacombe's avatar
Yoach Lacombe committed
1283
1284
        if training_args.max_steps < 0:
            # we know exactly the number of steps per epoch, so can skip through the required number of batches
1285
1286
1287
1288
1289
1290
1291
1292
1293
            resume_step = (cur_step - epochs_trained * steps_per_epoch)
            
            # TODO: currently broken
            
            if resume_step == round(len(vectorized_datasets["train"])/train_batch_size):
                resume_step = None
                vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)       
                epochs_trained += 1        
    
Yoach Lacombe's avatar
Yoach Lacombe committed
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
        else:
            # Currently we don't know how many steps we've taken in the current epoch
            # So we just shuffle the dataset one extra time and start from a fresh epoch
            # This is "good enough" for our purposes but not fully correct
            resume_step = None
            vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
    else:
        resume_step = None
        
    gen_kwargs = {
        "do_sample": model_args.do_sample,
        "max_length": model_args.max_length,
    }
    # TODO: add max_length
    
    # Define gradient update step fn
    def train_step(
        batch,
    ):
        model.train()
        outputs = model(**batch)
        # CE (data) loss
        ce_loss = outputs.loss
        # TODO: add CE per codebook 

        metrics = {"loss": ce_loss}
        return ce_loss, metrics
    
    # Define eval fn
    def eval_step(batch):
        model.eval()

        with torch.no_grad():
            outputs = model(**batch)
        # CE (data) loss
        ce_loss = outputs.loss
        metrics = {"loss": ce_loss}
        return metrics

    def generate_step(batch):
        model.eval()
        output_audios = accelerator.unwrap_model(model).generate(**batch, **gen_kwargs)
        output_audios = accelerator.pad_across_processes(output_audios, dim=1, pad_index=0)
        return output_audios


    for epoch in range(epochs_trained, num_epochs):
        vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
        train_dataloader = DataLoader(
            vectorized_datasets["train"],
            collate_fn=data_collator,
            batch_size=per_device_train_batch_size,
            num_workers=training_args.dataloader_num_workers,
            pin_memory=training_args.dataloader_pin_memory,
        )
        train_dataloader = accelerator.prepare(train_dataloader)
        if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset):
            train_dataloader.dataset.set_epoch(epoch)

        if resume_step is not None:
            # Skip the first N batches in the dataloader when resuming from a checkpoint
            train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
            resume_step = None

        for batch in train_dataloader:
            with accelerator.accumulate(model):
                loss, train_metric = train_step(batch)
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), training_args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()


            # Check if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                steps_trained_progress_bar.update(1)
                cur_step += 1

                if cur_step % training_args.logging_steps == 0:
                    steps_trained_progress_bar.write(
                        f"Step... ({cur_step} / {total_train_steps} | Loss:"
                        f" {train_metric['loss']}, Learning Rate:"
                        f" {lr_scheduler.get_last_lr()[0]})"
                    )
                    log_metric(
                        accelerator,
                        metrics=train_metric,
                        learning_rate=lr_scheduler.get_last_lr()[0],
                        train_time=train_time + time.time() - train_start,
                        step=cur_step,
                        epoch=epoch,
                        prefix="train",
                    )

                # save checkpoint and weights after each save_steps and at the end of training
                if (cur_step % training_args.save_steps == 0) or cur_step == total_train_steps:
                    intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}")
                    accelerator.save_state(output_dir=intermediate_dir)
                    accelerator.wait_for_everyone()
                    if accelerator.is_main_process:
                        rotate_checkpoints(training_args.save_total_limit, output_dir=training_args.output_dir)

                        if cur_step == total_train_steps:
                            # un-wrap student model for save
Yoach Lacombe's avatar
Yoach Lacombe committed
1400
1401
                            unwrapped_model = accelerator.unwrap_model(model)
                            unwrapped_model.save_pretrained(training_args.output_dir)
Yoach Lacombe's avatar
Yoach Lacombe committed
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422

                        if training_args.push_to_hub:
                            repo.push_to_hub(
                                commit_message=f"Saving train state of step {cur_step}",
                                blocking=False,
                            )

                if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps):
                    train_time += time.time() - train_start
                    model.eval()
                    # ======================== Evaluating ==============================
                    eval_metrics = []
                    eval_preds = []
                    eval_descriptions = []
                    eval_prompts = []
                    eval_start = time.time()

                    validation_dataloader = DataLoader(
                        vectorized_datasets["eval"],
                        collate_fn=data_collator,
                        batch_size=per_device_eval_batch_size,
1423
                        drop_last=True,
Yoach Lacombe's avatar
Yoach Lacombe committed
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
                        num_workers=training_args.dataloader_pin_memory,
                        pin_memory=training_args.dataloader_pin_memory,
                    )
                    validation_dataloader = accelerator.prepare(validation_dataloader)

                    for batch in tqdm(
                        validation_dataloader,
                        desc=f"Evaluating...",
                        position=2,
                        disable=not accelerator.is_local_main_process,
                    ):
                        # Model forward
                        eval_metric = eval_step(batch)
                        eval_metric = accelerator.gather_for_metrics(eval_metric)
                        eval_metrics.append(eval_metric)

                        # generation
                        if training_args.predict_with_generate:
                            generated_audios = generate_step(batch)
                            # Gather all predictions and targets
                            # TODO: also add prompt ids
                            # TODO: better gather
Yoach Lacombe's avatar
Yoach Lacombe committed
1446
1447
                            generated_audios, input_ids, prompts = accelerator.pad_across_processes((generated_audios, batch["input_ids"], batch["prompt_input_ids"]), dim=1, pad_index=0) 
                            generated_audios, input_ids, prompts =accelerator.gather_for_metrics((generated_audios, input_ids, prompts))
Yoach Lacombe's avatar
Yoach Lacombe committed
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
                            eval_preds.extend(generated_audios)
                            eval_descriptions.extend(input_ids)
                            eval_prompts.extend(prompts)

                    eval_time = time.time() - eval_start
                    # normalize eval metrics
                    eval_metrics = {
                        key: torch.mean(torch.stack([d[key] for d in eval_metrics])) for key in eval_metrics[0]
                    }

                    # compute metrics
                    metrics_desc = ""
                    if training_args.predict_with_generate:
                        metric_values, pred_descriptions, pred_prompts, audios, transcriptions = compute_metrics(
                            eval_preds, eval_descriptions, eval_prompts, accelerator.device
                        )
                        eval_metrics.update(metric_values)
                        metrics_desc = " ".join([f"Eval {key}: {value} |" for key, value in metric_values.items()])
                        log_pred(
                            accelerator,
                            pred_descriptions,
                            pred_prompts,
                            transcriptions,
                            audios,
                            sampling_rate=sampling_rate,
                            step=cur_step,
                            prefix="eval",
                        )

                    # Print metrics and update progress bar
                    steps_trained_progress_bar.write(
                        f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |"
                        f" {metrics_desc})"
                    )

                    log_metric(
                        accelerator,
                        metrics=eval_metrics,
                        train_time=eval_time,
                        step=cur_step,
                        epoch=epoch,
                        prefix="eval",
                    )

                    # flush the train metrics
                    train_start = time.time()

                # break condition
                if cur_step == total_train_steps:
                    continue_training = False
                    break

        if not continue_training:
            break

    accelerator.end_training()
    
1505
1506
1507


if __name__ == "__main__":
1508
    set_start_method("spawn")
1509
    main()