run_audio_classification.py 53.4 KB
Newer Older
sanchit-gandhi's avatar
sanchit-gandhi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
sanchit-gandhi's avatar
sanchit-gandhi committed
19
import re
sanchit-gandhi's avatar
sanchit-gandhi committed
20
import sys
sanchit-gandhi's avatar
sanchit-gandhi committed
21
from collections import Counter
sanchit-gandhi's avatar
sanchit-gandhi committed
22
23
from dataclasses import dataclass, field
from random import randint
24
25
26
from typing import List, Optional, Union, Dict

import torch
sanchit-gandhi's avatar
sanchit-gandhi committed
27
28
29
30
31

import datasets
import evaluate
import numpy as np
import transformers
32
33
from datasets import Dataset, DatasetDict, IterableDataset, concatenate_datasets, interleave_datasets, load_dataset
from tqdm import tqdm
sanchit-gandhi's avatar
sanchit-gandhi committed
34
35
36
37
38
39
40
from transformers import (
    AutoConfig,
    AutoFeatureExtractor,
    AutoModelForAudioClassification,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
sanchit-gandhi's avatar
sanchit-gandhi committed
41
    set_seed,
sanchit-gandhi's avatar
sanchit-gandhi committed
42
)
sanchit-gandhi's avatar
sanchit-gandhi committed
43
from transformers.models.whisper.tokenization_whisper import LANGUAGES
sanchit-gandhi's avatar
sanchit-gandhi committed
44
from transformers.trainer_utils import get_last_checkpoint
sanchit-gandhi's avatar
sanchit-gandhi committed
45
from transformers.utils import check_min_version
46
from transformers.trainer_pt_utils import LengthGroupedSampler
sanchit-gandhi's avatar
sanchit-gandhi committed
47

48
49
50
51
52
53
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2Model
from transformers import Wav2Vec2BertForSequenceClassification, Wav2Vec2BertModel
from transformers.models.wav2vec2.modeling_wav2vec2 import _HIDDEN_STATES_START_POSITION
from transformers.modeling_outputs import SequenceClassifierOutput
from torch import nn
from torch.nn import CrossEntropyLoss
sanchit-gandhi's avatar
sanchit-gandhi committed
54
55
56
57
58
59
60

logger = logging.getLogger(__name__)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")


sanchit-gandhi's avatar
sanchit-gandhi committed
61
def random_subsample(wav: np.ndarray, max_length: float, sample_rate: int = 16000) -> np.ndarray:
sanchit-gandhi's avatar
sanchit-gandhi committed
62
63
64
65
66
67
68
    """Randomly sample chunks of `max_length` seconds from the input audio"""
    sample_length = int(round(sample_rate * max_length))
    if len(wav) <= sample_length:
        return wav
    random_offset = randint(0, len(wav) - sample_length - 1)
    return wav[random_offset : random_offset + sample_length]

sanchit-gandhi's avatar
sanchit-gandhi committed
69

sanchit-gandhi's avatar
sanchit-gandhi committed
70
71
72
73
74
def deterministic_subsample(wav: np.ndarray, max_length: float, sample_rate: int = 16000) -> np.ndarray:
    """Take first `max_length` seconds from the input audio"""
    sample_length = int(round(sample_rate * max_length))
    if len(wav) <= sample_length:
        return wav
sanchit-gandhi's avatar
sanchit-gandhi committed
75
    return wav[0:sample_length]
sanchit-gandhi's avatar
sanchit-gandhi committed
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
class SequenceClassificationModel(Wav2Vec2ForSequenceClassification):
    def __init__(self, config):
        super().__init__(config)

        if hasattr(config, "add_adapter") and config.add_adapter:
            raise ValueError(
                "Sequence classification does not support the use of Wav2Vec2 adapters (config.add_adapter=True)"
            )
        self.wav2vec2 = Wav2Vec2Model(config)
        num_layers = config.num_hidden_layers + 1  # transformer layers + input embeddings
        if config.use_weighted_layer_sum:
            self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
        
        # To bypass w2v2
        self.compute_w2v2 = True

        # Initialize weights and apply final processing
        self.post_init()
        
    def forward(
        self,
        input_features=None,
        attention_mask=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        labels=None,
        hidden_states=None, # added
    ):
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = True

        if self.compute_w2v2:
            outputs = self.wav2vec2(
                input_features,
                attention_mask=attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

            hidden_states = outputs[_HIDDEN_STATES_START_POSITION][-1] # take last embedding layer

            if attention_mask is None:
                pooled_output = hidden_states.mean(dim=1)
            else:
                padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
                hidden_states[~padding_mask] = 0.0
                pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
        else:
            pooled_output = hidden_states

        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
        )
sanchit-gandhi's avatar
sanchit-gandhi committed
152

sanchit-gandhi's avatar
up  
sanchit-gandhi committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# This list first defines the accent prefixes, which we use to strip the accent from CV
# e.g. England, southern accent, slight west-country expression -> England
# TODO(YL): update this with any CV test prefixes not present in the train set
STARTS_WITH = [
    "Afrikaans",
    "American",
    "Australian",
    "Bangladeshi",
    "Canadian",
    "Chinese",
    "Dutch",
    "Eastern European",
    "European",
    "England",
    "English",
    "German",
    "Filipino",
    "India",
171
172
    "Irish",
    "Israeli",
sanchit-gandhi's avatar
up  
sanchit-gandhi committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    "Italian",
    "Japanese",
    "Kenyan",
    "Northern Irish",
    "New Zealand",
    "Nigerian",
    "Malaysian",
    "Russian",
    "Scottish",
    "Singaporean",
    "Slavic",
    "South African",
    "Southern African",
    "Swedish",
    "Swiss",
    "United States English",
    "West Indies",
    "french",
    "polish",
    "serbian",
]


# This dictionary is used to map the un-normalised accent names to normalised ones
# TODO(YL): update this with any CV test mappings not present in the train set
sanchit-gandhi's avatar
sanchit-gandhi committed
198
199
ACCENT_MAPPING = {
    "British": "English",
sanchit-gandhi's avatar
up  
sanchit-gandhi committed
200
    # "Canadian": "American",  TODO(SG): decide whether to normalize these to closely related accents
sanchit-gandhi's avatar
sanchit-gandhi committed
201
    # "New zealand": "Australian",
sanchit-gandhi's avatar
up  
sanchit-gandhi committed
202
    "Northern irish": "Irish",
sanchit-gandhi's avatar
sanchit-gandhi committed
203
    "Pakistani": "Indian",
sanchit-gandhi's avatar
sanchit-gandhi committed
204
    "Mainstream u s english": "American",
sanchit-gandhi's avatar
sanchit-gandhi committed
205
206
207
208
209
210
211
212
213
214
215
    "Southern british english": "English",
    "Indian english": "Indian",
    "Scottish english": "Scottish",
    "Don't know": "Unknown",
    "Nigerian english": "Nigerian",
    "Kenyan english": "Kenyan",
    "Ghanain english": "Ghanain",
    "Jamaican english": "Jamaican",
    "Indonesian english": "Indonesian",
    "South african english": "South african",
    "Irish english": "Irish",
sanchit-gandhi's avatar
sanchit-gandhi committed
216
    "Latin": "Latin american",
sanchit-gandhi's avatar
sanchit-gandhi committed
217
    "European": "Unknown",  # Too general
sanchit-gandhi's avatar
sanchit-gandhi committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    "Eastern european": "Eastern european",  # TODO(SG): keep for now, but maybe remove later as too general
    "Bangladeshi": "Indian",
    "England": "English",
    "India": "Indian",
    "Afrikaans": "South african",
    "California": "American",
    "Nepali": "Indian",
    "New york city": "American",
    "New jerseyan": "American",
    "Northumbrian british english": "English",
    "Nottinghamshire,east midlands": "English",
    "Southern african": "South african",
    "United states english": "American",
    "West indies": "Jamaican",
    "2nd language": "Unknown",  # Too vague
    "A savage texas gentleman": "American",
    "A variety of texan english with some german influence that has undergone the cot-caught merger": "American",
    "A'lo": "Unknown",  # Unclear
    "Academic southern english,england english": "English",
    "Argentinian english": "Latin american",
    "Austrian": "German",
    "Bangladesh,india and south asia (india, pakistan, sri lanka)": "Indian",
    "Brazillian accent": "Brazilian",
    "British accent": "English",
    "Caribbean canadian": "Unknown",  # Specific combination not listed
    "Colombian accent": "Latin american",
    "Czech accent": "Czech",
    "East african khoja": "Unknown",  # Specific community
    "East indian": "Indian",
    "East london": "English",
    "England,london,academic": "English",
    "Filipino": "Unknown",  # Unique blend
    "Fluent,e sl,european": "Unknown",  # Too vague
    "Generic european": "Unknown",  # Too vague
    "Georgian english": "Unknown",  # No direct match
    "Ghanaian english accent,african regular reader": "Unknown",  # Specific category not listed
    "Haitian creole": "Unknown",  # Unique blend
    "Hispanic": "Latin american",
    "Hispanic/latino": "Latin american",
    "Hong kong english": "Chinese",
    "Hong kong english,scottish english": "Chinese",
    "Hunglish": "Hungarian",
    "I think mine accent is influenced by indian accent ,yes please. ,india and south asia (india, pakistan, sri lanka)": "Indian",
    "I was born in england and have lived in australia, canada and france.": "English",
    "International english,united states english,australian english": "American",
    "Israeli": "Unknown",  # No direct match
    "Israeli english": "Unknown",  # No direct match
    "Javanese,indonesian english,malaysian english": "Indonesian",
    "Kazakhstan english": "Unknown",  # No direct match
    "Kiwi": "New zealand",  # Could be generalised to Australian
    "Latin america,united states english": "Latin american",
    "Latin american accent": "Latin american",
    "Latin english": "Unknown",  # Too vague
    "Latino": "Latin american",
    "Latvian": "Latvian",  # Note: added new
    "Little latino,united states english,second language": "Latin american",
    "Liverpool english,lancashire english,england english": "English",
    "Liverpudlian english": "English",
    "Malaysian english": "Malaysian",  # Note: added new
    "Mexican accent": "Latin american",
    "Mid-atlantic united states english,philadelphia, pennsylvania, united states english,united states english,philadelphia style united states english": "American",
    "Mid-atlantic,england english,united states english": "American",
    "Midatlantic,england english": "American",
    "Midwestern states (michigan),united states english": "American",
    "Mild northern england english": "English",
    "Minor french accent": "French",
    "Mix of american and british ,native polish": "Polish",
    "Mix of american and british accent": "Unknown",  # Combination not clearly mapped
    "Mostly american with some british and australian inflections": "Unknown",  # Combination not clearly mapped
    "My accent is influenced by the phones of all letters within a sentence.,southern african (south africa, zimbabwe, namibia)": "South african",
    "New zealand english": "New Zealand English",
    "Nigeria english": "Nigerian",  # Note: added new
    "Non native speaker from france": "French",
    "Non-native": "Unknown",  # Too vague
    "Non-native,german accent": "German",
    "North european english": "Unknown",  # Too broad
    "Norwegian": "Norwegian",  # Note: added new
    "Ontario,canadian english": "Canadian",  # Note: added new
    "Polish english": "Polish",
    "Rhode island new england accent": "American",
    "Singaporean english": "Singaporean",  # Note: added new
    "Slavic": "Eastern european",
    "Slighty southern affected by decades in the midwest, 4 years in spain and germany, speak some german, spanish, polish. have lived in nine states.": "Unknown",  # Complex blend
    "South african": "South african",
    "South atlantic (falkland islands, saint helena)": "Unknown",  # Specific regions not listed
    "South australia": "Australian",
    "South indian": "Indian",
    "Southern drawl": "American",
    "Southern texas accent,united states english": "American",
    "Southern united states,united states english": "American",
    "Spanish bilingual": "Spanish",
    "Spanish,foreign,non-native": "Spanish",
    "Strong latvian accent": "Latvian",
    "Swedish accent": "Swedish",  # Note: added new
    "Transnational englishes blend": "Unknown",  # Too vague
    "U.k. english": "English",
    "Very slight russian accent,standard american english,boston influence": "American",
    "Welsh english": "Welsh",
    "West african": "Unknown",  # No specific West African category
    "West indian": "Unknown",  # Caribbean, but no specific match
    "Western europe": "Unknown",  # Too broad
    "With heavy cantonese accent": "Chinese",
sanchit-gandhi's avatar
sanchit-gandhi committed
320
321
322
}


sanchit-gandhi's avatar
sanchit-gandhi committed
323
def preprocess_labels(label: str) -> str:
sanchit-gandhi's avatar
sanchit-gandhi committed
324
    """Apply pre-processing formatting to the accent labels"""
sanchit-gandhi's avatar
sanchit-gandhi committed
325
326
327
328
329
    if "_" in label:
        # voxpopuli stylises the accent as a language code (e.g. en_pl for "polish") - convert to full accent
        language_code = label.split("_")[-1]
        label = LANGUAGES[language_code]
    # VCTK labels for two words are concatenated into one (NewZeleand-> New Zealand)
sanchit-gandhi's avatar
sanchit-gandhi committed
330
331
332
333
    label = re.sub(r"(\w)([A-Z])", r"\1 \2", label).strip()
    for prefix in STARTS_WITH:
        if label.startswith(prefix):
            label = prefix
sanchit-gandhi's avatar
sanchit-gandhi committed
334
335
    # convert Whisper language code (polish) to capitalised (Polish)
    label = label.capitalize()
sanchit-gandhi's avatar
sanchit-gandhi committed
336
337
    if label in ACCENT_MAPPING:
        label = ACCENT_MAPPING[label]
sanchit-gandhi's avatar
sanchit-gandhi committed
338
    return label
sanchit-gandhi's avatar
sanchit-gandhi committed
339

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    
@dataclass
class DataCollatorFeatureExtractorWithPadding:
    """
    Data collator that will dynamically pad the inputs received to the longest sequence in the batch.
    """

    feature_extractor: AutoFeatureExtractor
    max_length_seconds: int
    feature_extractor_input_name: Optional[str] = "input_values"

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
        audios = [torch.tensor(deterministic_subsample(feature["audio"]["array"], max_length=self.max_length_seconds, sample_rate=self.feature_extractor.sampling_rate)).squeeze().numpy() for feature in features]
        batch = self.feature_extractor(audios, return_tensors="pt", padding="longest", return_attention_mask=True)
        
        batch["labels"] = torch.tensor([feature["labels_id"] for feature in features])
        return batch

@dataclass
class DataCollatorHiddenStatesPadding:
    """
    Data collator that will dynamically pad the inputs received to the longest sequence in the batch.
    """

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:        
        hidden_states = torch.stack([torch.tensor(feature["hidden_states"]) for feature in features])

        batch = {"hidden_states": hidden_states}
        
        batch["labels"] = torch.tensor([feature["labels_id"] for feature in features])
        return batch


sanchit-gandhi's avatar
sanchit-gandhi committed
375

sanchit-gandhi's avatar
sanchit-gandhi committed
376
377
378
379
380
381
382
383
384
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

385
386
387
388
389
390
391
    train_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
            " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
392
    )
393
394
395
396
397
398
    train_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset configs by a '+' symbol."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
399
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
400
401
402
403
404
405
    train_split_name: str = field(
        default="train",
        metadata={
            "help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
        },
    )
406
407
408
409
410
411
    train_dataset_samples: str = field(
        default=None,
        metadata={
            "help": "Number of samples in the training data. Load and combine "
            "multiple datasets by separating dataset samples by a '+' symbol."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
412
    )
413
414
    eval_dataset_name: str = field(
        default=None,
sanchit-gandhi's avatar
sanchit-gandhi committed
415
        metadata={
416
            "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified."
sanchit-gandhi's avatar
sanchit-gandhi committed
417
418
        },
    )
419
420
    eval_dataset_config_name: Optional[str] = field(
        default=None,
sanchit-gandhi's avatar
sanchit-gandhi committed
421
        metadata={
422
            "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified"
sanchit-gandhi's avatar
sanchit-gandhi committed
423
424
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
425
426
427
428
429
430
431
432
433
    eval_split_name: str = field(
        default="validation",
        metadata={
            "help": (
                "The name of the evaluation data set split to use (via the datasets"
                " library). Defaults to 'validation'"
            )
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
434
435
436
437
    audio_column_name: str = field(
        default="audio",
        metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
    )
438
    train_label_column_name: str = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
439
        default="labels",
440
441
442
443
444
        metadata={
            "help": "The name of the dataset column containing the labels in the train set. Defaults to 'label'"
        },
    )
    eval_label_column_name: str = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
445
        default="labels",
446
        metadata={"help": "The name of the dataset column containing the labels in the eval set. Defaults to 'label'"},
sanchit-gandhi's avatar
sanchit-gandhi committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
466
    max_length_seconds: Optional[float] = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
467
        default=20,
sanchit-gandhi's avatar
sanchit-gandhi committed
468
469
        metadata={"help": "Audio samples will be randomly cut to this length during training if the value is set."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
470
    min_length_seconds: Optional[float] = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
471
472
        default=5,
        metadata={"help": "Audio samples less than this value will be filtered during training if the value is set."},
sanchit-gandhi's avatar
sanchit-gandhi committed
473
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
474
475
476
477
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
478
479
480
481
    filter_threshold: Optional[float] = field(
        default=1.0,
        metadata={"help": "Filter labels that occur less than `filter_threshold` percent in the training/eval data."},
    )
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    max_samples_per_label: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "If set, randomly limits the number of samples per label."
            )
        },   
    )
    save_to_disk: str = field(
        default=None,
        metadata={
            "help": "If set, will save the dataset to this path if this is an empyt folder. If not empty, will load the datasets from it."
        }
    )
    temporary_save_to_disk: str = field(
        default=None,
        metadata={
            "help": "Temporarily save audio labels here."
        }
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
502
503
504
505
506
507
508
509
510
511


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        default="facebook/wav2vec2-base",
512
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models. Only works with Wav2Vec2 models"},
sanchit-gandhi's avatar
sanchit-gandhi committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"}
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    feature_extractor_name: Optional[str] = field(
        default=None, metadata={"help": "Name or path of preprocessor config."}
    )
    freeze_feature_encoder: bool = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
528
529
530
531
        default=False,
        metadata={
            "help": "Whether to freeze the feature encoder layers of the model. Only relevant for Wav2Vec2-style models."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
532
533
534
    )
    freeze_base_model: bool = field(
        default=True, metadata={"help": "Whether to freeze the base encoder of the model."}
sanchit-gandhi's avatar
sanchit-gandhi committed
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
    )
    attention_mask: bool = field(
        default=True, metadata={"help": "Whether to generate an attention mask in the feature extractor."}
    )
    token: str = field(
        default=None,
        metadata={
            "help": (
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
            )
        },
    )
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
                "execute code present on the Hub on your local machine."
            )
        },
    )
    ignore_mismatched_sizes: bool = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
559
        default=True,
sanchit-gandhi's avatar
sanchit-gandhi committed
560
561
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
    attention_dropout: float = field(
        default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
    )
    activation_dropout: float = field(
        default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
    )
    feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
    hidden_dropout: float = field(
        default=0.0,
        metadata={
            "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
        },
    )
    final_dropout: float = field(
        default=0.0,
        metadata={"help": "The dropout probability for the final projection layer."},
    )
    mask_time_prob: float = field(
        default=0.05,
        metadata={
            "help": (
                "Probability of each feature vector along the time axis to be chosen as the start of the vector "
                "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature "
                "vectors will be masked along the time axis."
            )
        },
    )
    mask_time_length: int = field(
        default=10,
        metadata={"help": "Length of vector span to mask along the time axis."},
    )
    mask_feature_prob: float = field(
        default=0.0,
        metadata={
            "help": (
                "Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan"
                " to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature"
                " bins will be masked along the time axis."
            )
        },
    )
    mask_feature_length: int = field(
        default=10,
        metadata={"help": "Length of vector span to mask along the feature axis."},
    )
    layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
608
609
    use_weighted_layer_sum: bool = field(default=False, metadata={"help": "Whether to use a weighted average of layer outputs with learned weights."})
    use_last_embedding_layer: bool = field(default=False, metadata={"help": "Whether to use the last layer hidden state. Only work with W2V model."})
sanchit-gandhi's avatar
sanchit-gandhi committed
610

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655

def convert_dataset_str_to_list(
    dataset_names,
    dataset_config_names,
    splits=None,
    label_column_names=None,
    dataset_samples=None,
    default_split="train",
):
    if isinstance(dataset_names, str):
        dataset_names = dataset_names.split("+")
        dataset_config_names = dataset_config_names.split("+")
        splits = splits.split("+") if splits is not None else None
        label_column_names = label_column_names.split("+") if label_column_names is not None else None
        dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None

    # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
    if len(dataset_names) != len(dataset_config_names):
        raise ValueError(
            f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(dataset_config_names)} configs."
        )

    if splits is not None and len(splits) != len(dataset_names):
        raise ValueError(
            f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
        )

    if label_column_names is not None and len(label_column_names) != len(dataset_names):
        raise ValueError(
            f"Ensure one label column name is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(label_column_names)} label column names."
        )

    if dataset_samples is not None:
        if len(dataset_samples) != len(dataset_names):
            raise ValueError(
                f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
                f"{len(dataset_samples)} samples."
            )
        dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
    else:
        dataset_samples = [None] * len(dataset_names)

    label_column_names = (
sanchit-gandhi's avatar
sanchit-gandhi committed
656
        label_column_names if label_column_names is not None else ["labels" for _ in range(len(dataset_names))]
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
    )
    splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]

    dataset_names_dict = []
    for i, ds_name in enumerate(dataset_names):
        dataset_names_dict.append(
            {
                "name": ds_name,
                "config": dataset_config_names[i],
                "split": splits[i],
                "label_column_name": label_column_names[i],
                "samples": dataset_samples[i],
            }
        )
    return dataset_names_dict


def load_multiple_datasets(
    dataset_names: Union[List, str],
    dataset_config_names: Union[List, str],
    splits: Optional[Union[List, str]] = None,
    label_column_names: Optional[List] = None,
sanchit-gandhi's avatar
sanchit-gandhi committed
679
    sampling_rate: Optional[int] = 16000,
680
681
    stopping_strategy: Optional[str] = "first_exhausted",
    dataset_samples: Optional[Union[List, np.array]] = None,
sanchit-gandhi's avatar
sanchit-gandhi committed
682
    streaming: Optional[bool] = False,
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
    seed: Optional[int] = None,
    audio_column_name: Optional[str] = "audio",
    **kwargs,
) -> Union[Dataset, IterableDataset]:
    dataset_names_dict = convert_dataset_str_to_list(
        dataset_names, dataset_config_names, splits, label_column_names, dataset_samples
    )

    if dataset_samples is not None:
        dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
        probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
    else:
        probabilities = None

    all_datasets = []
    # iterate over the datasets we want to interleave
    for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
        dataset = load_dataset(
            dataset_dict["name"],
            dataset_dict["config"],
            split=dataset_dict["split"],
            streaming=streaming,
            **kwargs,
        )
        dataset_features = dataset.features.keys()

        if audio_column_name not in dataset_features:
            raise ValueError(
                f"Audio column name '{audio_column_name}' not found in dataset"
                f" '{dataset_dict['name']}'. Make sure to set `--audio_column_name` to"
                f" the correct audio column - one of {', '.join(dataset_features)}."
sanchit-gandhi's avatar
sanchit-gandhi committed
714
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
715
716
        # resample to specified sampling rate
        dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate))
717
718

        if dataset_dict["label_column_name"] not in dataset_features:
sanchit-gandhi's avatar
sanchit-gandhi committed
719
            raise ValueError(
sanchit-gandhi's avatar
sanchit-gandhi committed
720
                f"Label column name {dataset_dict['label_column_name']} not found in dataset"
721
722
                f" '{dataset_dict['name']}'. Make sure to set `--label_column_name` to the"
                f" correct text column - one of {', '.join(dataset_features)}."
sanchit-gandhi's avatar
sanchit-gandhi committed
723
724
            )

725
        # blanket renaming of all label columns to label
sanchit-gandhi's avatar
sanchit-gandhi committed
726
727
        if dataset_dict["label_column_name"] != "labels":
            dataset = dataset.rename_column(dataset_dict["label_column_name"], "labels")
728
729

        dataset_features = dataset.features.keys()
sanchit-gandhi's avatar
sanchit-gandhi committed
730
        columns_to_keep = {"audio", "labels"}
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
        dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
        all_datasets.append(dataset)

    if len(all_datasets) == 1:
        # we have a single dataset so just return it as is
        return all_datasets[0]

    if streaming:
        interleaved_dataset = interleave_datasets(
            all_datasets,
            stopping_strategy=stopping_strategy,
            probabilities=probabilities,
            seed=seed,
        )
    else:
        interleaved_dataset = concatenate_datasets(all_datasets)

    return interleaved_dataset

sanchit-gandhi's avatar
sanchit-gandhi committed
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to train from scratch."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
    if data_args.save_to_disk is not None:
        os.makedirs(data_args.save_to_disk, exist_ok=True)
    
    # assume that the dataset has been saved to `save_to_disk` if the latter is not empty
    dataset_was_precomputed = len(os.listdir(data_args.save_to_disk)) > 0
    if dataset_was_precomputed:
        raw_datasets = datasets.load_from_disk(data_args.save_to_disk)
    else:
        # Initialize our dataset and prepare it for the audio classification task.
        raw_datasets = DatasetDict()

        if training_args.do_train:
            raw_datasets["train"] = load_multiple_datasets(
                data_args.train_dataset_name,
                data_args.train_dataset_config_name,
                splits=data_args.train_split_name,
                label_column_names=data_args.train_label_column_name,
                dataset_samples=data_args.train_dataset_samples,
                seed=training_args.seed,
sanchit-gandhi's avatar
sanchit-gandhi committed
825
                cache_dir=model_args.cache_dir,
826
                token=True if model_args.token else None,
sanchit-gandhi's avatar
sanchit-gandhi committed
827
                trust_remote_code=model_args.trust_remote_code,
sanchit-gandhi's avatar
sanchit-gandhi committed
828
                num_proc=data_args.preprocessing_num_workers,
829
                # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
830
            )
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849

        if training_args.do_eval:
            dataset_names_dict = convert_dataset_str_to_list(
                data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
                (
                    data_args.eval_dataset_config_name
                    if data_args.eval_dataset_config_name
                    else data_args.train_dataset_config_name
                ),
                splits=data_args.eval_split_name,
                label_column_names=data_args.eval_label_column_name,
            )
            all_eval_splits = []
            # load multiple eval sets
            for dataset_dict in dataset_names_dict:
                pretty_name = (
                    f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
                    if len(dataset_names_dict) > 1
                    else "eval"
850
                )
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
                all_eval_splits.append(pretty_name)
                raw_datasets[pretty_name] = load_dataset(
                    dataset_dict["name"],
                    dataset_dict["config"],
                    split=dataset_dict["split"],
                    cache_dir=model_args.cache_dir,
                    token=True if model_args.token else None,
                    trust_remote_code=model_args.trust_remote_code,
                    num_proc=data_args.preprocessing_num_workers,
                    # streaming=data_args.streaming,
                )
                features = raw_datasets[pretty_name].features.keys()
                if dataset_dict["label_column_name"] not in features:
                    raise ValueError(
                        f"--label_column_name {data_args.eval_label_column_name} not found in dataset '{data_args.dataset_name}'. "
                        "Make sure to set `--label_column_name` to the correct text column - one of "
                        f"{', '.join(raw_datasets['train'].column_names)}."
                    )
                elif dataset_dict["label_column_name"] != "labels":
                    raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
                        dataset_dict["label_column_name"], "labels"
                    )
                raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns(
                    set(raw_datasets[pretty_name].features.keys()) - {"audio", "labels"}
875
876
                )

877
878
879
880
        if not training_args.do_train and not training_args.do_eval:
            raise ValueError(
                "Cannot not train and not do evaluation. At least one of training or evaluation has to be performed."
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
881
882
883
884
885
886
887
888
889
890
891

    # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
    # transformer outputs in the classifier, but it doesn't always lead to better accuracy
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name or model_args.model_name_or_path,
        return_attention_mask=model_args.attention_mask,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )
892
893
894
895
896
897
898
899
900
    
    feature_extractor_input_name = feature_extractor.model_input_names[0]

    if not dataset_was_precomputed:
        # `datasets` takes care of automatically loading and resampling the audio,
        # so we just need to set the correct target sampling rate.
        raw_datasets = raw_datasets.cast_column(
            data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
        )
sanchit-gandhi's avatar
sanchit-gandhi committed
901

902
903
904
905
906
907
        with training_args.main_process_first():
            if training_args.do_train:
                if data_args.max_train_samples is not None:
                    raw_datasets["train"] = (
                        raw_datasets["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
                    )
sanchit-gandhi's avatar
sanchit-gandhi committed
908

909
910
911
912
913
            if training_args.do_eval:
                if data_args.max_eval_samples is not None:
                    raw_datasets["eval"] = (
                        raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
                    )
sanchit-gandhi's avatar
sanchit-gandhi committed
914
915
916
917

    sampling_rate = feature_extractor.sampling_rate
    model_input_name = feature_extractor.model_input_names[0]

918
919
920
921
922
923
    if not dataset_was_precomputed:
        def prepare_dataset(audio, labels):
            batch = {}
            batch["length"] = len(audio["array"])
            batch["labels"] = preprocess_labels(labels)
            return batch
sanchit-gandhi's avatar
sanchit-gandhi committed
924

925
926
927
928
929
930
931
932
933
934
935
        with training_args.main_process_first():
            tmp_datasets = raw_datasets.map(
                prepare_dataset,
                num_proc=data_args.preprocessing_num_workers,
                input_columns=["audio", "labels"],
                remove_columns=[col for col  in next(iter(raw_datasets.values())).column_names if col != "labels"], # this is a trick to avoid to rewrite the entire audio column which takes ages
                desc="Computing audio length",
            )
            
        for split in raw_datasets:
            raw_datasets[split] = concatenate_datasets([raw_datasets[split].remove_columns(["labels"]), tmp_datasets[split]], axis=1)
sanchit-gandhi's avatar
sanchit-gandhi committed
936

sanchit-gandhi's avatar
sanchit-gandhi committed
937
938
939
    # filter training data with inputs < min_input_length
    min_input_length = data_args.min_length_seconds * sampling_rate

940
941
942
    if not dataset_was_precomputed:
        def is_audio_valid(input_length):
            return input_length > min_input_length
sanchit-gandhi's avatar
sanchit-gandhi committed
943

944
945
946
947
948
949
        with training_args.main_process_first():
            raw_datasets = raw_datasets.filter(
                is_audio_valid,
                input_columns=["length"],
                num_proc=data_args.preprocessing_num_workers,
                desc="Filtering by audio length",
sanchit-gandhi's avatar
sanchit-gandhi committed
950
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
951

952
953
954
        # filter training data with non-valid labels
        def is_label_valid(label):
            return label != "Unknown"
sanchit-gandhi's avatar
sanchit-gandhi committed
955

956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
        with training_args.main_process_first():
            raw_datasets = raw_datasets.filter(
                is_label_valid,
                input_columns=["labels"],
                num_proc=data_args.preprocessing_num_workers,
                desc="Filtering by labels",
            )
        
        if training_args.do_train and data_args.max_samples_per_label:
            label_names = set(raw_datasets["train"]["labels"])
            labels = np.array(raw_datasets["train"]["labels"])
            indices = np.arange(len(labels))
            indices_to_keep = []
            set_seed(training_args.seed)
            for label in label_names:
                label_indices = indices[labels==label]
                label_indices = np.random.choice(label_indices, size=min(data_args.max_samples_per_label, len(label_indices)), replace=False)
                indices_to_keep.extend(np.random.choice(label_indices, size=min(data_args.max_samples_per_label, len(label_indices)), replace=False))
                    
            with training_args.main_process_first():
                raw_datasets["train"] = raw_datasets["train"].select(indices_to_keep).shuffle(seed=training_args.seed)

        # Print a summary of the labels to the stddout (helps identify low-label classes that could be filtered)
        # sort by freq
        count_labels_dict = Counter(raw_datasets["train"]["labels"])
        count_labels_dict = sorted(count_labels_dict.items(), key=lambda item: (-item[1], item[0]))
        labels, frequencies = zip(*count_labels_dict)
        total_labels = sum(frequencies)
        labels_to_remove = []

        logger.info(f"{'Accent':<15} {'Perc.':<5}")
        logger.info("-" * 20)
        for lab, freq in zip(labels, frequencies):
            freq = 100 * freq / total_labels
            logger.info(f"{lab:<15} {freq:<5}")
            if freq < data_args.filter_threshold:
                labels_to_remove.append(lab)

        if len(labels_to_remove):
            # filter training data with label freq below threshold
            def is_label_valid(label):
                return label not in labels_to_remove

            logger.info(f"Labels removed: {labels_to_remove}")
            
            with training_args.main_process_first():
                raw_datasets = raw_datasets.filter(
                    is_label_valid,
                    input_columns=["labels"],
                    num_proc=data_args.preprocessing_num_workers,
                    desc="Filtering low freq labels",
                )
sanchit-gandhi's avatar
sanchit-gandhi committed
1008

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
        # We'll include these in the model's config to get human readable labels in the Inference API.
        set_labels = set(raw_datasets["train"]["labels"])
        if training_args.do_eval:
            logger.info(f"The following accents are present in the eval set but not the test set: {set(raw_datasets['eval']['labels']) - set_labels}")
            set_labels = set_labels.union(set(raw_datasets["eval"]["labels"]))
        label2id, id2label = {}, {}
        for i, label in enumerate(sorted(list(set_labels))):
            label2id[label] = str(i)
            id2label[str(i)] = label
            
        with training_args.main_process_first():
            raw_datasets = raw_datasets.map(
                    lambda label: {"labels_id": int(label2id[label])},
                    input_columns=["labels"],
                    num_proc=data_args.preprocessing_num_workers,
                    desc="Apply labels id",
                )
    else:
        label2id, id2label = {}, {}

        # TODO: slow - probably not best
        if training_args.do_train:
            for sample in raw_datasets["train"]:
                candidate = label2id.get(sample["labels"])
                if candidate is not None and candidate != sample["labels_id"]:
                    print(f"issue {candidate} should be {sample['labels_id']}")
                label2id[sample["labels"]] = sample["labels_id"]
        if training_args.do_eval:
            for sample in raw_datasets["eval"]:
                candidate = label2id.get(sample["labels"])
                if candidate is not None and candidate != sample["labels_id"]:
                    print(f"issue {candidate} should be {sample['labels_id']}")
                label2id[sample["labels"]] = sample["labels_id"]
                
        # if training_args.do_train:
        #     label2id = dict(zip(raw_datasets["train"]["labels"], raw_datasets["train"]["labels_id"]))
        # if training_args.do_eval:
        #     label2id.update(dict(zip(raw_datasets["eval"]["labels"], raw_datasets["eval"]["labels_id"])))
        id2label = {str(val): key for (key, val) in label2id.items()}
        
sanchit-gandhi's avatar
sanchit-gandhi committed
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
    # Load the accuracy metric from the datasets package
    metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
    # `predictions` and `label_ids` fields) and has to return a dictionary string to float.
    def compute_metrics(eval_pred):
        """Computes accuracy on a batch of predictions"""
        predictions = np.argmax(eval_pred.predictions, axis=1)
        return metric.compute(predictions=predictions, references=eval_pred.label_ids)

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
sanchit-gandhi's avatar
sanchit-gandhi committed
1061
        num_labels=len(label2id),
sanchit-gandhi's avatar
sanchit-gandhi committed
1062
1063
1064
1065
1066
1067
1068
1069
        label2id=label2id,
        id2label=id2label,
        finetuning_task="audio-classification",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
    # adapt config with regularization
    config.update(
        {
            "feat_proj_dropout": model_args.feat_proj_dropout,
            "attention_dropout": model_args.attention_dropout,
            "hidden_dropout": model_args.hidden_dropout,
            "final_dropout": model_args.final_dropout,
            "mask_time_prob": model_args.mask_time_prob,
            "mask_time_length": model_args.mask_time_length,
            "mask_feature_prob": model_args.mask_feature_prob,
            "mask_feature_length": model_args.mask_feature_length,
            "layerdrop": model_args.layerdrop,
            "activation_dropout": model_args.activation_dropout,
1083
            "use_weighted_layer_sum": model_args.use_weighted_layer_sum,
sanchit-gandhi's avatar
sanchit-gandhi committed
1084
1085
1086
        }
    )

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
    if model_args.use_last_embedding_layer:
        model = SequenceClassificationModel.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            token=model_args.token,
            trust_remote_code=model_args.trust_remote_code,
            ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
        )
        
        if model_args.freeze_base_model: 
            model.compute_w2v2 = False
    else:
        model = AutoModelForAudioClassification.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            token=model_args.token,
            trust_remote_code=model_args.trust_remote_code,
            ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
        )
sanchit-gandhi's avatar
sanchit-gandhi committed
1112
    # freeze the convolutional waveform encoder for wav2vec2-style models
sanchit-gandhi's avatar
sanchit-gandhi committed
1113
    if model_args.freeze_feature_encoder:
sanchit-gandhi's avatar
sanchit-gandhi committed
1114
1115
1116
1117
        if hasattr(model, "freeze_feature_encoder"):
            model.freeze_feature_encoder()
        else:
            raise ValueError("Method for freezing the feature encoder is not defined for Whisper-style models.")
sanchit-gandhi's avatar
sanchit-gandhi committed
1118

sanchit-gandhi's avatar
sanchit-gandhi committed
1119
    if model_args.freeze_base_model:
sanchit-gandhi's avatar
sanchit-gandhi committed
1120
        if hasattr(model, "freeze_base_model"):
sanchit-gandhi's avatar
sanchit-gandhi committed
1121
1122
            # wav2vec2-style models
            model.freeze_base_model()
sanchit-gandhi's avatar
sanchit-gandhi committed
1123
1124
            if hasattr(model, "freeze_feature_encoder"):
                model.freeze_feature_encoder()
sanchit-gandhi's avatar
sanchit-gandhi committed
1125
        elif hasattr(model, "freeze_encoder"):
sanchit-gandhi's avatar
sanchit-gandhi committed
1126
1127
1128
1129
1130
            # whisper-style models
            model.freeze_encoder()
        else:
            raise ValueError("Method for freezing the base module of the audio encoder is not defined")

1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
    if model_args.freeze_base_model and model_args.use_last_embedding_layer:
        if not dataset_was_precomputed:
            # precomputing hidden states
            from torch.utils.data import DataLoader
            from accelerate import Accelerator
            
            _HIDDEN_STATES_START_POSITION = 2
            
            if training_args.fp16:
                mixed_precision = "fp16"
            elif training_args.bf16:
                mixed_precision = "bf16"
            else:
                mixed_precision = "no"

            accelerator = Accelerator(
                gradient_accumulation_steps=training_args.gradient_accumulation_steps,
                mixed_precision=mixed_precision,
                project_dir=training_args.output_dir,
            )
            
            audio_data_collator = DataCollatorFeatureExtractorWithPadding(feature_extractor, max_length_seconds=data_args.max_length_seconds, feature_extractor_input_name=feature_extractor_input_name)

            for split in raw_datasets:
                data_loader = DataLoader(
                    raw_datasets[split],
                    batch_size=training_args.per_device_train_batch_size, # TODO: chose another one
                    collate_fn=audio_data_collator,
                    num_workers=training_args.dataloader_num_workers,
                    pin_memory=True,
                )
                data_loader = accelerator.prepare(data_loader)        
                
                all_encoder_outputs = []
                for batch in tqdm(data_loader, disable=not accelerator.is_local_main_process):
                    model.wav2vec2.to(batch[feature_extractor_input_name].device)
                    
                    with torch.no_grad():
                        encoder_outputs = model.wav2vec2(batch[feature_extractor_input_name], attention_mask=batch.get("attention_mask", None), output_hidden_states=True)
                    hidden_states = encoder_outputs[_HIDDEN_STATES_START_POSITION][-1]
                    if batch.get("attention_mask", None) is None:
                        hidden_states = hidden_states.mean(dim=1)
                    else:
                        padding_mask = model._get_feature_vector_attention_mask(hidden_states.shape[1], batch.get("attention_mask", None))
                        hidden_states[~padding_mask] = 0.0
                        hidden_states = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)

                    encoder_outputs = accelerator.gather_for_metrics(hidden_states)
                    
                    # TODO: check it works multi device
                    if accelerator.is_main_process:
                        all_encoder_outputs.extend(encoder_outputs.to("cpu").numpy())
                        
                if accelerator.is_main_process:
                    tmp_hidden_states = Dataset.from_dict({"hidden_states": all_encoder_outputs})
                    tmp_hidden_states.save_to_disk(os.path.join(data_args.temporary_save_to_disk, split))
                accelerator.wait_for_everyone()
                del all_encoder_outputs

                tmp_hidden_states = datasets.load_from_disk(os.path.join(data_args.temporary_save_to_disk, split))
                with accelerator.main_process_first():
                    raw_datasets[split] = concatenate_datasets([raw_datasets[split].remove_columns("audio"), tmp_hidden_states], axis=1)
                        
            accelerator.free_memory()
            del data_loader, batch, accelerator
            
        data_collator = DataCollatorHiddenStatesPadding()
    else:
        data_collator = DataCollatorFeatureExtractorWithPadding(feature_extractor, max_length_seconds=data_args.max_length_seconds)
    
    if data_args.save_to_disk is not None and not dataset_was_precomputed:
        raw_datasets.save_to_disk(data_args.save_to_disk)
        logger.info(f"Dataset saved at {data_args.save_to_disk}. Be careful of changing data parameters, which won't change the current saved dataset if reloaded.")

sanchit-gandhi's avatar
sanchit-gandhi committed
1205
1206
1207
1208
    # Initialize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
1209
        data_collator=data_collator,
sanchit-gandhi's avatar
sanchit-gandhi committed
1210
1211
        train_dataset=raw_datasets["train"] if training_args.do_train else None,
        eval_dataset=raw_datasets["eval"] if training_args.do_eval else None,
sanchit-gandhi's avatar
sanchit-gandhi committed
1212
1213
1214
        compute_metrics=compute_metrics,
        tokenizer=feature_extractor,
    )
1215
    ignore_keys = ["hidden_states","attentions"] if model_args.use_weighted_layer_sum else None
sanchit-gandhi's avatar
sanchit-gandhi committed
1216
1217
1218
1219
1220
1221
1222
1223

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
1224
        train_result = trainer.train(resume_from_checkpoint=checkpoint, ignore_keys_for_eval=ignore_keys)
sanchit-gandhi's avatar
sanchit-gandhi committed
1225
1226
1227
1228
1229
1230
1231
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
1232
        metrics = trainer.evaluate(ignore_keys=ignore_keys)
sanchit-gandhi's avatar
sanchit-gandhi committed
1233
1234
1235
1236
1237
1238
1239
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "audio-classification",
sanchit-gandhi's avatar
sanchit-gandhi committed
1240
        "dataset": data_args.train_dataset_name.split("+")[0],
sanchit-gandhi's avatar
sanchit-gandhi committed
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
        "tags": ["audio-classification"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


if __name__ == "__main__":
    main()