nodes_post_processing.py 8.07 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
5
import math
comfyanonymous's avatar
comfyanonymous committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

import comfy.utils


class Blend:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image1": ("IMAGE",),
                "image2": ("IMAGE",),
                "blend_factor": ("FLOAT", {
                    "default": 0.5,
                    "min": 0.0,
                    "max": 1.0,
                    "step": 0.01
                }),
                "blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "blend_images"

33
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

    def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
        if image1.shape != image2.shape:
            image2 = image2.permute(0, 3, 1, 2)
            image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
            image2 = image2.permute(0, 2, 3, 1)

        blended_image = self.blend_mode(image1, image2, blend_mode)
        blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
        blended_image = torch.clamp(blended_image, 0, 1)
        return (blended_image,)

    def blend_mode(self, img1, img2, mode):
        if mode == "normal":
            return img2
        elif mode == "multiply":
            return img1 * img2
        elif mode == "screen":
            return 1 - (1 - img1) * (1 - img2)
        elif mode == "overlay":
            return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
        elif mode == "soft_light":
            return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
        else:
            raise ValueError(f"Unsupported blend mode: {mode}")

    def g(self, x):
        return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))

63
64
def gaussian_kernel(kernel_size: int, sigma: float, device=None):
    x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij")
BlenderNeko's avatar
BlenderNeko committed
65
66
67
68
    d = torch.sqrt(x * x + y * y)
    g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
    return g / g.sum()

comfyanonymous's avatar
comfyanonymous committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
class Blur:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "blur_radius": ("INT", {
                    "default": 1,
                    "min": 1,
                    "max": 31,
                    "step": 1
                }),
                "sigma": ("FLOAT", {
                    "default": 1.0,
                    "min": 0.1,
                    "max": 10.0,
                    "step": 0.1
                }),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "blur"

96
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
101
102
103
104

    def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
        if blur_radius == 0:
            return (image,)

        batch_size, height, width, channels = image.shape

        kernel_size = blur_radius * 2 + 1
105
        kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1)
comfyanonymous's avatar
comfyanonymous committed
106
107

        image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
BlenderNeko's avatar
BlenderNeko committed
108
        padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
comfyanonymous's avatar
comfyanonymous committed
109
        blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
comfyanonymous's avatar
comfyanonymous committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        blurred = blurred.permute(0, 2, 3, 1)

        return (blurred,)

class Quantize:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "colors": ("INT", {
                    "default": 256,
                    "min": 1,
                    "max": 256,
                    "step": 1
                }),
                "dither": (["none", "floyd-steinberg"],),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "quantize"

136
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

    def quantize(self, image: torch.Tensor, colors: int = 256, dither: str = "FLOYDSTEINBERG"):
        batch_size, height, width, _ = image.shape
        result = torch.zeros_like(image)

        dither_option = Image.Dither.FLOYDSTEINBERG if dither == "floyd-steinberg" else Image.Dither.NONE

        for b in range(batch_size):
            tensor_image = image[b]
            img = (tensor_image * 255).to(torch.uint8).numpy()
            pil_image = Image.fromarray(img, mode='RGB')

            palette = pil_image.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
            quantized_image = pil_image.quantize(colors=colors, palette=palette, dither=dither_option)

            quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
            result[b] = quantized_array

        return (result,)

class Sharpen:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "sharpen_radius": ("INT", {
                    "default": 1,
                    "min": 1,
                    "max": 31,
                    "step": 1
                }),
BlenderNeko's avatar
BlenderNeko committed
172
                "sigma": ("FLOAT", {
comfyanonymous's avatar
comfyanonymous committed
173
174
                    "default": 1.0,
                    "min": 0.1,
BlenderNeko's avatar
BlenderNeko committed
175
176
177
178
179
180
                    "max": 10.0,
                    "step": 0.1
                }),
                "alpha": ("FLOAT", {
                    "default": 1.0,
                    "min": 0.0,
comfyanonymous's avatar
comfyanonymous committed
181
182
183
184
185
186
187
188
189
                    "max": 5.0,
                    "step": 0.1
                }),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "sharpen"

190
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
191

BlenderNeko's avatar
BlenderNeko committed
192
    def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float):
comfyanonymous's avatar
comfyanonymous committed
193
194
195
196
197
198
        if sharpen_radius == 0:
            return (image,)

        batch_size, height, width, channels = image.shape

        kernel_size = sharpen_radius * 2 + 1
BlenderNeko's avatar
BlenderNeko committed
199
        kernel = gaussian_kernel(kernel_size, sigma) * -(alpha*10)
comfyanonymous's avatar
comfyanonymous committed
200
        center = kernel_size // 2
BlenderNeko's avatar
BlenderNeko committed
201
        kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
comfyanonymous's avatar
comfyanonymous committed
202
203
204
        kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)

        tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
BlenderNeko's avatar
BlenderNeko committed
205
206
        tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
        sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
comfyanonymous's avatar
comfyanonymous committed
207
208
209
210
211
212
        sharpened = sharpened.permute(0, 2, 3, 1)

        result = torch.clamp(sharpened, 0, 1)

        return (result,)

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
class ImageScaleToTotalPixels:
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}),
                            }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, megapixels):
        samples = image.movedim(-1,1)
        total = int(megapixels * 1024 * 1024)

        scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)

        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
239
NODE_CLASS_MAPPINGS = {
240
241
242
243
    "ImageBlend": Blend,
    "ImageBlur": Blur,
    "ImageQuantize": Quantize,
    "ImageSharpen": Sharpen,
244
    "ImageScaleToTotalPixels": ImageScaleToTotalPixels,
comfyanonymous's avatar
comfyanonymous committed
245
}