nodes_model_advanced.py 7.24 KB
Newer Older
1
2
3
import folder_paths
import comfy.sd
import comfy.model_sampling
comfyanonymous's avatar
comfyanonymous committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import torch

class LCM(comfy.model_sampling.EPS):
    def calculate_denoised(self, sigma, model_output, model_input):
        timestep = self.timestep(sigma).view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        x0 = model_input - model_output * sigma

        sigma_data = 0.5
        scaled_timestep = timestep * 10.0 #timestep_scaling

        c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
        c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5

        return c_out * x0 + c_skip * model_input

20
21
22
class ModelSamplingDiscreteDistilled(torch.nn.Module):
    original_timesteps = 50

comfyanonymous's avatar
comfyanonymous committed
23
24
25
26
27
28
29
30
31
32
33
    def __init__(self):
        super().__init__()
        self.sigma_data = 1.0
        timesteps = 1000
        beta_start = 0.00085
        beta_end = 0.012

        betas = torch.linspace(beta_start**0.5, beta_end**0.5, timesteps, dtype=torch.float32) ** 2
        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, dim=0)

34
        self.skip_steps = timesteps // self.original_timesteps
comfyanonymous's avatar
comfyanonymous committed
35
36


37
38
39
        alphas_cumprod_valid = torch.zeros((self.original_timesteps), dtype=torch.float32)
        for x in range(self.original_timesteps):
            alphas_cumprod_valid[self.original_timesteps - 1 - x] = alphas_cumprod[timesteps - 1 - x * self.skip_steps]
comfyanonymous's avatar
comfyanonymous committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

        sigmas = ((1 - alphas_cumprod_valid) / alphas_cumprod_valid) ** 0.5
        self.set_sigmas(sigmas)

    def set_sigmas(self, sigmas):
        self.register_buffer('sigmas', sigmas)
        self.register_buffer('log_sigmas', sigmas.log())

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        log_sigma = sigma.log()
        dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
59
        return (dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)).to(sigma.device)
comfyanonymous's avatar
comfyanonymous committed
60
61

    def sigma(self, timestep):
62
        t = torch.clamp(((timestep.float().to(self.log_sigmas.device) - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1))
comfyanonymous's avatar
comfyanonymous committed
63
64
65
66
        low_idx = t.floor().long()
        high_idx = t.ceil().long()
        w = t.frac()
        log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
67
        return log_sigma.exp().to(timestep.device)
comfyanonymous's avatar
comfyanonymous committed
68
69

    def percent_to_sigma(self, percent):
70
        if percent <= 0.0:
71
            return 999999999.9
72
        if percent >= 1.0:
73
            return 0.0
74
        percent = 1.0 - percent
75
        return self.sigma(torch.tensor(percent * 999.0)).item()
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100


def rescale_zero_terminal_snr_sigmas(sigmas):
    alphas_cumprod = 1 / ((sigmas * sigmas) + 1)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= (alphas_bar_sqrt_T)

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas_bar[-1] = 4.8973451890853435e-08
    return ((1 - alphas_bar) / alphas_bar) ** 0.5

class ModelSamplingDiscrete:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
comfyanonymous's avatar
comfyanonymous committed
101
                              "sampling": (["eps", "v_prediction", "lcm"],),
102
103
104
105
106
107
108
109
110
111
112
                              "zsnr": ("BOOLEAN", {"default": False}),
                              }}

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, sampling, zsnr):
        m = model.clone()

comfyanonymous's avatar
comfyanonymous committed
113
        sampling_base = comfy.model_sampling.ModelSamplingDiscrete
114
115
116
117
        if sampling == "eps":
            sampling_type = comfy.model_sampling.EPS
        elif sampling == "v_prediction":
            sampling_type = comfy.model_sampling.V_PREDICTION
comfyanonymous's avatar
comfyanonymous committed
118
119
        elif sampling == "lcm":
            sampling_type = LCM
120
            sampling_base = ModelSamplingDiscreteDistilled
121

comfyanonymous's avatar
comfyanonymous committed
122
        class ModelSamplingAdvanced(sampling_base, sampling_type):
123
124
125
126
127
            pass

        model_sampling = ModelSamplingAdvanced()
        if zsnr:
            model_sampling.set_sigmas(rescale_zero_terminal_snr_sigmas(model_sampling.sigmas))
comfyanonymous's avatar
comfyanonymous committed
128

129
130
131
        m.add_object_patch("model_sampling", model_sampling)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
class ModelSamplingContinuousEDM:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "sampling": (["v_prediction", "eps"],),
                              "sigma_max": ("FLOAT", {"default": 120.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
                              "sigma_min": ("FLOAT", {"default": 0.002, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
                              }}

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, sampling, sigma_max, sigma_min):
        m = model.clone()

        if sampling == "eps":
            sampling_type = comfy.model_sampling.EPS
        elif sampling == "v_prediction":
            sampling_type = comfy.model_sampling.V_PREDICTION

        class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingContinuousEDM, sampling_type):
            pass

        model_sampling = ModelSamplingAdvanced()
        model_sampling.set_sigma_range(sigma_min, sigma_max)
        m.add_object_patch("model_sampling", model_sampling)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
class RescaleCFG:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, multiplier):
        def rescale_cfg(args):
            cond = args["cond"]
            uncond = args["uncond"]
            cond_scale = args["cond_scale"]
            sigma = args["sigma"]
179
            sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1))
comfyanonymous's avatar
comfyanonymous committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
            x_orig = args["input"]

            #rescale cfg has to be done on v-pred model output
            x = x_orig / (sigma * sigma + 1.0)
            cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
            uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)

            #rescalecfg
            x_cfg = uncond + cond_scale * (cond - uncond)
            ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True)
            ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True)

            x_rescaled = x_cfg * (ro_pos / ro_cfg)
            x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg

            return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5)

        m = model.clone()
        m.set_model_sampler_cfg_function(rescale_cfg)
        return (m, )

201
202
NODE_CLASS_MAPPINGS = {
    "ModelSamplingDiscrete": ModelSamplingDiscrete,
comfyanonymous's avatar
comfyanonymous committed
203
    "ModelSamplingContinuousEDM": ModelSamplingContinuousEDM,
comfyanonymous's avatar
comfyanonymous committed
204
    "RescaleCFG": RescaleCFG,
205
}