nodes_model_advanced.py 5.73 KB
Newer Older
1
2
3
import folder_paths
import comfy.sd
import comfy.model_sampling
comfyanonymous's avatar
comfyanonymous committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch

class LCM(comfy.model_sampling.EPS):
    def calculate_denoised(self, sigma, model_output, model_input):
        timestep = self.timestep(sigma).view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        x0 = model_input - model_output * sigma

        sigma_data = 0.5
        scaled_timestep = timestep * 10.0 #timestep_scaling

        c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
        c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5

        return c_out * x0 + c_skip * model_input

class ModelSamplingDiscreteLCM(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.sigma_data = 1.0
        timesteps = 1000
        beta_start = 0.00085
        beta_end = 0.012

        betas = torch.linspace(beta_start**0.5, beta_end**0.5, timesteps, dtype=torch.float32) ** 2
        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, dim=0)

        original_timesteps = 50
        self.skip_steps = timesteps // original_timesteps


        alphas_cumprod_valid = torch.zeros((original_timesteps), dtype=torch.float32)
        for x in range(original_timesteps):
            alphas_cumprod_valid[original_timesteps - 1 - x] = alphas_cumprod[timesteps - 1 - x * self.skip_steps]

        sigmas = ((1 - alphas_cumprod_valid) / alphas_cumprod_valid) ** 0.5
        self.set_sigmas(sigmas)

    def set_sigmas(self, sigmas):
        self.register_buffer('sigmas', sigmas)
        self.register_buffer('log_sigmas', sigmas.log())

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        log_sigma = sigma.log()
        dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
        return dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)

    def sigma(self, timestep):
        t = torch.clamp(((timestep - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1))
        low_idx = t.floor().long()
        high_idx = t.ceil().long()
        w = t.frac()
        log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
        return log_sigma.exp()

    def percent_to_sigma(self, percent):
        return self.sigma(torch.tensor(percent * 999.0))
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94


def rescale_zero_terminal_snr_sigmas(sigmas):
    alphas_cumprod = 1 / ((sigmas * sigmas) + 1)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= (alphas_bar_sqrt_T)

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas_bar[-1] = 4.8973451890853435e-08
    return ((1 - alphas_bar) / alphas_bar) ** 0.5

class ModelSamplingDiscrete:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
comfyanonymous's avatar
comfyanonymous committed
95
                              "sampling": (["eps", "v_prediction", "lcm"],),
96
97
98
99
100
101
102
103
104
105
106
                              "zsnr": ("BOOLEAN", {"default": False}),
                              }}

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, sampling, zsnr):
        m = model.clone()

comfyanonymous's avatar
comfyanonymous committed
107
        sampling_base = comfy.model_sampling.ModelSamplingDiscrete
108
109
110
111
        if sampling == "eps":
            sampling_type = comfy.model_sampling.EPS
        elif sampling == "v_prediction":
            sampling_type = comfy.model_sampling.V_PREDICTION
comfyanonymous's avatar
comfyanonymous committed
112
113
114
        elif sampling == "lcm":
            sampling_type = LCM
            sampling_base = ModelSamplingDiscreteLCM
115

comfyanonymous's avatar
comfyanonymous committed
116
        class ModelSamplingAdvanced(sampling_base, sampling_type):
117
118
119
120
121
            pass

        model_sampling = ModelSamplingAdvanced()
        if zsnr:
            model_sampling.set_sigmas(rescale_zero_terminal_snr_sigmas(model_sampling.sigmas))
comfyanonymous's avatar
comfyanonymous committed
122

123
124
125
        m.add_object_patch("model_sampling", model_sampling)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
class RescaleCFG:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, multiplier):
        def rescale_cfg(args):
            cond = args["cond"]
            uncond = args["uncond"]
            cond_scale = args["cond_scale"]
            sigma = args["sigma"]
            x_orig = args["input"]

            #rescale cfg has to be done on v-pred model output
            x = x_orig / (sigma * sigma + 1.0)
            cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
            uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)

            #rescalecfg
            x_cfg = uncond + cond_scale * (cond - uncond)
            ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True)
            ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True)

            x_rescaled = x_cfg * (ro_pos / ro_cfg)
            x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg

            return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5)

        m = model.clone()
        m.set_model_sampler_cfg_function(rescale_cfg)
        return (m, )

164
165
NODE_CLASS_MAPPINGS = {
    "ModelSamplingDiscrete": ModelSamplingDiscrete,
comfyanonymous's avatar
comfyanonymous committed
166
    "RescaleCFG": RescaleCFG,
167
}