model_patcher.py 21.4 KB
Newer Older
1
2
3
import torch
import copy
import inspect
4
import logging
5
import uuid
6
7

import comfy.utils
8
import comfy.model_management
9

10
11
12
13
14
15
16
17
18
19
20
def apply_weight_decompose(dora_scale, weight):
    weight_norm = (
        weight.transpose(0, 1)
        .reshape(weight.shape[1], -1)
        .norm(dim=1, keepdim=True)
        .reshape(weight.shape[1], *[1] * (weight.dim() - 1))
        .transpose(0, 1)
    )

    return weight * (dora_scale / weight_norm)

comfyanonymous's avatar
comfyanonymous committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None):
    to = model_options["transformer_options"].copy()

    if "patches_replace" not in to:
        to["patches_replace"] = {}
    else:
        to["patches_replace"] = to["patches_replace"].copy()

    if name not in to["patches_replace"]:
        to["patches_replace"][name] = {}
    else:
        to["patches_replace"][name] = to["patches_replace"][name].copy()

    if transformer_index is not None:
        block = (block_name, number, transformer_index)
    else:
        block = (block_name, number)
    to["patches_replace"][name][block] = patch
    model_options["transformer_options"] = to
    return model_options
41

42
class ModelPatcher:
43
    def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False):
44
45
46
47
        self.size = size
        self.model = model
        self.patches = {}
        self.backup = {}
48
49
        self.object_patches = {}
        self.object_patches_backup = {}
50
51
52
53
54
55
56
57
58
        self.model_options = {"transformer_options":{}}
        self.model_size()
        self.load_device = load_device
        self.offload_device = offload_device
        if current_device is None:
            self.current_device = self.offload_device
        else:
            self.current_device = current_device

59
        self.weight_inplace_update = weight_inplace_update
60
        self.model_lowvram = False
61
        self.lowvram_patch_counter = 0
62
        self.patches_uuid = uuid.uuid4()
63

64
65
66
67
    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
68
        self.size = comfy.model_management.module_size(self.model)
69
        self.model_keys = set(model_sd.keys())
70
        return self.size
71
72

    def clone(self):
comfyanonymous's avatar
comfyanonymous committed
73
        n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update)
74
75
76
        n.patches = {}
        for k in self.patches:
            n.patches[k] = self.patches[k][:]
77
        n.patches_uuid = self.patches_uuid
78

79
        n.object_patches = self.object_patches.copy()
80
81
        n.model_options = copy.deepcopy(self.model_options)
        n.model_keys = self.model_keys
82
83
        n.backup = self.backup
        n.object_patches_backup = self.object_patches_backup
84
85
86
87
88
89
90
        return n

    def is_clone(self, other):
        if hasattr(other, 'model') and self.model is other.model:
            return True
        return False

91
92
93
94
95
96
97
98
99
100
101
102
103
    def clone_has_same_weights(self, clone):
        if not self.is_clone(clone):
            return False

        if len(self.patches) == 0 and len(clone.patches) == 0:
            return True

        if self.patches_uuid == clone.patches_uuid:
            if len(self.patches) != len(clone.patches):
                logging.warning("WARNING: something went wrong, same patch uuid but different length of patches.")
            else:
                return True

104
105
106
    def memory_required(self, input_shape):
        return self.model.memory_required(input_shape=input_shape)

107
    def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False):
108
109
110
111
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
112
113
        if disable_cfg1_optimization:
            self.model_options["disable_cfg1_optimization"] = True
114

115
    def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
116
        self.model_options["sampler_post_cfg_function"] = self.model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
117
118
        if disable_cfg1_optimization:
            self.model_options["disable_cfg1_optimization"] = True
119

120
121
122
    def set_model_unet_function_wrapper(self, unet_wrapper_function):
        self.model_options["model_function_wrapper"] = unet_wrapper_function

123
124
125
    def set_model_denoise_mask_function(self, denoise_mask_function):
        self.model_options["denoise_mask_function"] = denoise_mask_function

126
127
128
129
130
131
    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

132
    def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None):
comfyanonymous's avatar
comfyanonymous committed
133
        self.model_options = set_model_options_patch_replace(self.model_options, patch, name, block_name, number, transformer_index=transformer_index)
134
135
136
137
138
139
140

    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

141
142
    def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None):
        self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index)
143

144
145
    def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None):
        self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index)
146
147
148
149
150
151
152

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

153
154
155
    def set_model_input_block_patch(self, patch):
        self.set_model_patch(patch, "input_block_patch")

156
157
158
    def set_model_input_block_patch_after_skip(self, patch):
        self.set_model_patch(patch, "input_block_patch_after_skip")

159
160
161
    def set_model_output_block_patch(self, patch):
        self.set_model_patch(patch, "output_block_patch")

162
163
164
    def add_object_patch(self, name, obj):
        self.object_patches[name] = obj

165
166
167
168
    def get_model_object(self, name):
        if name in self.object_patches:
            return self.object_patches[name]
        else:
169
170
171
172
            if name in self.object_patches_backup:
                return self.object_patches_backup[name]
            else:
                return comfy.utils.get_attr(self.model, name)
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
190
191
        if "model_function_wrapper" in self.model_options:
            wrap_func = self.model_options["model_function_wrapper"]
192
            if hasattr(wrap_func, "to"):
193
                self.model_options["model_function_wrapper"] = wrap_func.to(device)
194
195
196
197
198
199
200
201
202
203
204
205
206
207

    def model_dtype(self):
        if hasattr(self.model, "get_dtype"):
            return self.model.get_dtype()

    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
        p = set()
        for k in patches:
            if k in self.model_keys:
                p.add(k)
                current_patches = self.patches.get(k, [])
                current_patches.append((strength_patch, patches[k], strength_model))
                self.patches[k] = current_patches

208
        self.patches_uuid = uuid.uuid4()
209
210
211
        return list(p)

    def get_key_patches(self, filter_prefix=None):
comfyanonymous's avatar
comfyanonymous committed
212
        comfy.model_management.unload_model_clones(self)
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        model_sd = self.model_state_dict()
        p = {}
        for k in model_sd:
            if filter_prefix is not None:
                if not k.startswith(filter_prefix):
                    continue
            if k in self.patches:
                p[k] = [model_sd[k]] + self.patches[k]
            else:
                p[k] = (model_sd[k],)
        return p

    def model_state_dict(self, filter_prefix=None):
        sd = self.model.state_dict()
        keys = list(sd.keys())
        if filter_prefix is not None:
            for k in keys:
                if not k.startswith(filter_prefix):
                    sd.pop(k)
        return sd

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    def patch_weight_to_device(self, key, device_to=None):
        if key not in self.patches:
            return

        weight = comfy.utils.get_attr(self.model, key)

        inplace_update = self.weight_inplace_update

        if key not in self.backup:
            self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update)

        if device_to is not None:
            temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
        else:
            temp_weight = weight.to(torch.float32, copy=True)
        out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
        if inplace_update:
            comfy.utils.copy_to_param(self.model, key, out_weight)
        else:
            comfy.utils.set_attr_param(self.model, key, out_weight)

255
    def patch_model(self, device_to=None, patch_weights=True):
256
        for k in self.object_patches:
257
            old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
258
259
260
            if k not in self.object_patches_backup:
                self.object_patches_backup[k] = old

261
262
263
264
        if patch_weights:
            model_sd = self.model_state_dict()
            for key in self.patches:
                if key not in model_sd:
265
                    logging.warning("could not patch. key doesn't exist in model: {}".format(key))
266
                    continue
267

268
                self.patch_weight_to_device(key, device_to)
269

270
271
272
            if device_to is not None:
                self.model.to(device_to)
                self.current_device = device_to
273
274
275

        return self.model

276
    def patch_model_lowvram(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False):
277
278
279
280
281
282
283
284
285
286
287
        self.patch_model(device_to, patch_weights=False)

        logging.info("loading in lowvram mode {}".format(lowvram_model_memory/(1024 * 1024)))
        class LowVramPatch:
            def __init__(self, key, model_patcher):
                self.key = key
                self.model_patcher = model_patcher
            def __call__(self, weight):
                return self.model_patcher.calculate_weight(self.model_patcher.patches[self.key], weight, self.key)

        mem_counter = 0
288
        patch_counter = 0
289
290
291
292
293
294
295
296
297
298
299
300
        for n, m in self.model.named_modules():
            lowvram_weight = False
            if hasattr(m, "comfy_cast_weights"):
                module_mem = comfy.model_management.module_size(m)
                if mem_counter + module_mem >= lowvram_model_memory:
                    lowvram_weight = True

            weight_key = "{}.weight".format(n)
            bias_key = "{}.bias".format(n)

            if lowvram_weight:
                if weight_key in self.patches:
301
302
303
304
                    if force_patch_weights:
                        self.patch_weight_to_device(weight_key)
                    else:
                        m.weight_function = LowVramPatch(weight_key, self)
305
                        patch_counter += 1
306
                if bias_key in self.patches:
307
308
309
310
                    if force_patch_weights:
                        self.patch_weight_to_device(bias_key)
                    else:
                        m.bias_function = LowVramPatch(bias_key, self)
311
                        patch_counter += 1
312
313
314
315
316
317
318
319
320
321
322
323

                m.prev_comfy_cast_weights = m.comfy_cast_weights
                m.comfy_cast_weights = True
            else:
                if hasattr(m, "weight"):
                    self.patch_weight_to_device(weight_key, device_to)
                    self.patch_weight_to_device(bias_key, device_to)
                    m.to(device_to)
                    mem_counter += comfy.model_management.module_size(m)
                    logging.debug("lowvram: loaded module regularly {}".format(m))

        self.model_lowvram = True
324
        self.lowvram_patch_counter = patch_counter
325
326
        return self.model

327
328
329
330
331
332
333
334
335
336
337
338
339
    def calculate_weight(self, patches, weight, key):
        for p in patches:
            alpha = p[0]
            v = p[1]
            strength_model = p[2]

            if strength_model != 1.0:
                weight *= strength_model

            if isinstance(v, list):
                v = (self.calculate_weight(v[1:], v[0].clone(), key), )

            if len(v) == 1:
comfyanonymous's avatar
comfyanonymous committed
340
341
342
343
344
345
                patch_type = "diff"
            elif len(v) == 2:
                patch_type = v[0]
                v = v[1]

            if patch_type == "diff":
346
347
348
                w1 = v[0]
                if alpha != 0.0:
                    if w1.shape != weight.shape:
349
                        logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
350
                    else:
351
                        weight += alpha * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype)
comfyanonymous's avatar
comfyanonymous committed
352
            elif patch_type == "lora": #lora/locon
353
354
                mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
                mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
355
                dora_scale = v[4]
356
357
358
359
                if v[2] is not None:
                    alpha *= v[2] / mat2.shape[0]
                if v[3] is not None:
                    #locon mid weights, hopefully the math is fine because I didn't properly test it
360
                    mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32)
361
362
363
364
                    final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
                    mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
                try:
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype)
365
366
                    if dora_scale is not None:
                        weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight)
367
                except Exception as e:
368
                    logging.error("ERROR {} {} {}".format(patch_type, key, e))
comfyanonymous's avatar
comfyanonymous committed
369
            elif patch_type == "lokr":
370
371
372
373
374
375
376
                w1 = v[0]
                w2 = v[1]
                w1_a = v[3]
                w1_b = v[4]
                w2_a = v[5]
                w2_b = v[6]
                t2 = v[7]
377
                dora_scale = v[8]
378
379
380
381
                dim = None

                if w1 is None:
                    dim = w1_b.shape[0]
382
383
                    w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32),
                                  comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32))
384
                else:
385
                    w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32)
386
387
388
389

                if w2 is None:
                    dim = w2_b.shape[0]
                    if t2 is None:
390
391
                        w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32))
392
                    else:
393
394
395
396
                        w2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                          comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
                                          comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32),
                                          comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32))
397
                else:
398
                    w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32)
399
400
401
402
403
404
405
406

                if len(w2.shape) == 4:
                    w1 = w1.unsqueeze(2).unsqueeze(2)
                if v[2] is not None and dim is not None:
                    alpha *= v[2] / dim

                try:
                    weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
407
408
                    if dora_scale is not None:
                        weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight)
409
                except Exception as e:
410
                    logging.error("ERROR {} {} {}".format(patch_type, key, e))
comfyanonymous's avatar
comfyanonymous committed
411
            elif patch_type == "loha":
412
413
414
415
416
417
                w1a = v[0]
                w1b = v[1]
                if v[2] is not None:
                    alpha *= v[2] / w1b.shape[0]
                w2a = v[3]
                w2b = v[4]
418
                dora_scale = v[7]
419
420
421
                if v[5] is not None: #cp decomposition
                    t1 = v[5]
                    t2 = v[6]
422
423
424
425
426
427
428
429
430
                    m1 = torch.einsum('i j k l, j r, i p -> p r k l',
                                      comfy.model_management.cast_to_device(t1, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w1b, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w1a, weight.device, torch.float32))

                    m2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                      comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w2b, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w2a, weight.device, torch.float32))
431
                else:
432
433
434
435
                    m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32),
                                  comfy.model_management.cast_to_device(w1b, weight.device, torch.float32))
                    m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32),
                                  comfy.model_management.cast_to_device(w2b, weight.device, torch.float32))
436
437
438

                try:
                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
439
440
                    if dora_scale is not None:
                        weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight)
441
                except Exception as e:
442
                    logging.error("ERROR {} {} {}".format(patch_type, key, e))
comfyanonymous's avatar
comfyanonymous committed
443
444
445
446
            elif patch_type == "glora":
                if v[4] is not None:
                    alpha *= v[4] / v[0].shape[0]

447
448
                dora_scale = v[5]

comfyanonymous's avatar
comfyanonymous committed
449
450
451
452
453
                a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32)
                a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32)
                b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
                b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)

454
455
                try:
                    weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype)
456
457
                    if dora_scale is not None:
                        weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight)
458
459
                except Exception as e:
                    logging.error("ERROR {} {} {}".format(patch_type, key, e))
comfyanonymous's avatar
comfyanonymous committed
460
            else:
461
                logging.warning("patch type not recognized {} {}".format(patch_type, key))
462
463
464

        return weight

465
466
467
468
469
470
471
472
473
    def unpatch_model(self, device_to=None, unpatch_weights=True):
        if unpatch_weights:
            if self.model_lowvram:
                for m in self.model.modules():
                    if hasattr(m, "prev_comfy_cast_weights"):
                        m.comfy_cast_weights = m.prev_comfy_cast_weights
                        del m.prev_comfy_cast_weights
                    m.weight_function = None
                    m.bias_function = None
474

475
                self.model_lowvram = False
476
                self.lowvram_patch_counter = 0
477

478
            keys = list(self.backup.keys())
479

480
481
482
483
484
485
            if self.weight_inplace_update:
                for k in keys:
                    comfy.utils.copy_to_param(self.model, k, self.backup[k])
            else:
                for k in keys:
                    comfy.utils.set_attr_param(self.model, k, self.backup[k])
486

487
            self.backup.clear()
488

489
490
491
            if device_to is not None:
                self.model.to(device_to)
                self.current_device = device_to
492
493
494

        keys = list(self.object_patches_backup.keys())
        for k in keys:
495
            comfy.utils.set_attr(self.model, k, self.object_patches_backup[k])
496

497
        self.object_patches_backup.clear()