model_patcher.py 20.3 KB
Newer Older
1
2
3
import torch
import copy
import inspect
4
import logging
5
import uuid
6
7

import comfy.utils
8
import comfy.model_management
9

10
11
12
13
14
15
16
17
18
19
20
21
def apply_weight_decompose(dora_scale, weight):
    weight_norm = (
        weight.transpose(0, 1)
        .reshape(weight.shape[1], -1)
        .norm(dim=1, keepdim=True)
        .reshape(weight.shape[1], *[1] * (weight.dim() - 1))
        .transpose(0, 1)
    )

    return weight * (dora_scale / weight_norm)


22
class ModelPatcher:
23
    def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False):
24
25
26
27
        self.size = size
        self.model = model
        self.patches = {}
        self.backup = {}
28
29
        self.object_patches = {}
        self.object_patches_backup = {}
30
31
32
33
34
35
36
37
38
        self.model_options = {"transformer_options":{}}
        self.model_size()
        self.load_device = load_device
        self.offload_device = offload_device
        if current_device is None:
            self.current_device = self.offload_device
        else:
            self.current_device = current_device

39
        self.weight_inplace_update = weight_inplace_update
40
        self.model_lowvram = False
41
        self.patches_uuid = uuid.uuid4()
42

43
44
45
46
    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
47
        self.size = comfy.model_management.module_size(self.model)
48
        self.model_keys = set(model_sd.keys())
49
        return self.size
50
51

    def clone(self):
comfyanonymous's avatar
comfyanonymous committed
52
        n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update)
53
54
55
        n.patches = {}
        for k in self.patches:
            n.patches[k] = self.patches[k][:]
56
        n.patches_uuid = self.patches_uuid
57

58
        n.object_patches = self.object_patches.copy()
59
60
        n.model_options = copy.deepcopy(self.model_options)
        n.model_keys = self.model_keys
61
62
        n.backup = self.backup
        n.object_patches_backup = self.object_patches_backup
63
64
65
66
67
68
69
        return n

    def is_clone(self, other):
        if hasattr(other, 'model') and self.model is other.model:
            return True
        return False

70
71
72
73
74
75
76
77
78
79
80
81
82
    def clone_has_same_weights(self, clone):
        if not self.is_clone(clone):
            return False

        if len(self.patches) == 0 and len(clone.patches) == 0:
            return True

        if self.patches_uuid == clone.patches_uuid:
            if len(self.patches) != len(clone.patches):
                logging.warning("WARNING: something went wrong, same patch uuid but different length of patches.")
            else:
                return True

83
84
85
    def memory_required(self, input_shape):
        return self.model.memory_required(input_shape=input_shape)

86
    def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False):
87
88
89
90
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
91
92
        if disable_cfg1_optimization:
            self.model_options["disable_cfg1_optimization"] = True
93

94
    def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
95
        self.model_options["sampler_post_cfg_function"] = self.model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
96
97
        if disable_cfg1_optimization:
            self.model_options["disable_cfg1_optimization"] = True
98

99
100
101
    def set_model_unet_function_wrapper(self, unet_wrapper_function):
        self.model_options["model_function_wrapper"] = unet_wrapper_function

102
103
104
    def set_model_denoise_mask_function(self, denoise_mask_function):
        self.model_options["denoise_mask_function"] = denoise_mask_function

105
106
107
108
109
110
    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

111
    def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None):
112
113
114
115
116
        to = self.model_options["transformer_options"]
        if "patches_replace" not in to:
            to["patches_replace"] = {}
        if name not in to["patches_replace"]:
            to["patches_replace"][name] = {}
117
118
119
120
121
        if transformer_index is not None:
            block = (block_name, number, transformer_index)
        else:
            block = (block_name, number)
        to["patches_replace"][name][block] = patch
122
123
124
125
126
127
128

    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

129
130
    def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None):
        self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index)
131

132
133
    def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None):
        self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index)
134
135
136
137
138
139
140

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

141
142
143
    def set_model_input_block_patch(self, patch):
        self.set_model_patch(patch, "input_block_patch")

144
145
146
    def set_model_input_block_patch_after_skip(self, patch):
        self.set_model_patch(patch, "input_block_patch_after_skip")

147
148
149
    def set_model_output_block_patch(self, patch):
        self.set_model_patch(patch, "output_block_patch")

150
151
152
    def add_object_patch(self, name, obj):
        self.object_patches[name] = obj

153
154
155
156
157
158
    def get_model_object(self, name):
        if name in self.object_patches:
            return self.object_patches[name]
        else:
            return comfy.utils.get_attr(self.model, name)

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
175
176
        if "model_function_wrapper" in self.model_options:
            wrap_func = self.model_options["model_function_wrapper"]
177
            if hasattr(wrap_func, "to"):
178
                self.model_options["model_function_wrapper"] = wrap_func.to(device)
179
180
181
182
183
184
185
186
187
188
189
190
191
192

    def model_dtype(self):
        if hasattr(self.model, "get_dtype"):
            return self.model.get_dtype()

    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
        p = set()
        for k in patches:
            if k in self.model_keys:
                p.add(k)
                current_patches = self.patches.get(k, [])
                current_patches.append((strength_patch, patches[k], strength_model))
                self.patches[k] = current_patches

193
        self.patches_uuid = uuid.uuid4()
194
195
196
        return list(p)

    def get_key_patches(self, filter_prefix=None):
comfyanonymous's avatar
comfyanonymous committed
197
        comfy.model_management.unload_model_clones(self)
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        model_sd = self.model_state_dict()
        p = {}
        for k in model_sd:
            if filter_prefix is not None:
                if not k.startswith(filter_prefix):
                    continue
            if k in self.patches:
                p[k] = [model_sd[k]] + self.patches[k]
            else:
                p[k] = (model_sd[k],)
        return p

    def model_state_dict(self, filter_prefix=None):
        sd = self.model.state_dict()
        keys = list(sd.keys())
        if filter_prefix is not None:
            for k in keys:
                if not k.startswith(filter_prefix):
                    sd.pop(k)
        return sd

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    def patch_weight_to_device(self, key, device_to=None):
        if key not in self.patches:
            return

        weight = comfy.utils.get_attr(self.model, key)

        inplace_update = self.weight_inplace_update

        if key not in self.backup:
            self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update)

        if device_to is not None:
            temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
        else:
            temp_weight = weight.to(torch.float32, copy=True)
        out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
        if inplace_update:
            comfy.utils.copy_to_param(self.model, key, out_weight)
        else:
            comfy.utils.set_attr_param(self.model, key, out_weight)

240
    def patch_model(self, device_to=None, patch_weights=True):
241
        for k in self.object_patches:
242
            old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
243
244
245
            if k not in self.object_patches_backup:
                self.object_patches_backup[k] = old

246
247
248
249
        if patch_weights:
            model_sd = self.model_state_dict()
            for key in self.patches:
                if key not in model_sd:
250
                    logging.warning("could not patch. key doesn't exist in model: {}".format(key))
251
                    continue
252

253
                self.patch_weight_to_device(key, device_to)
254

255
256
257
            if device_to is not None:
                self.model.to(device_to)
                self.current_device = device_to
258
259
260

        return self.model

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    def patch_model_lowvram(self, device_to=None, lowvram_model_memory=0):
        self.patch_model(device_to, patch_weights=False)

        logging.info("loading in lowvram mode {}".format(lowvram_model_memory/(1024 * 1024)))
        class LowVramPatch:
            def __init__(self, key, model_patcher):
                self.key = key
                self.model_patcher = model_patcher
            def __call__(self, weight):
                return self.model_patcher.calculate_weight(self.model_patcher.patches[self.key], weight, self.key)

        mem_counter = 0
        for n, m in self.model.named_modules():
            lowvram_weight = False
            if hasattr(m, "comfy_cast_weights"):
                module_mem = comfy.model_management.module_size(m)
                if mem_counter + module_mem >= lowvram_model_memory:
                    lowvram_weight = True

            weight_key = "{}.weight".format(n)
            bias_key = "{}.bias".format(n)

            if lowvram_weight:
                if weight_key in self.patches:
                    m.weight_function = LowVramPatch(weight_key, self)
                if bias_key in self.patches:
                    m.bias_function = LowVramPatch(weight_key, self)

                m.prev_comfy_cast_weights = m.comfy_cast_weights
                m.comfy_cast_weights = True
            else:
                if hasattr(m, "weight"):
                    self.patch_weight_to_device(weight_key, device_to)
                    self.patch_weight_to_device(bias_key, device_to)
                    m.to(device_to)
                    mem_counter += comfy.model_management.module_size(m)
                    logging.debug("lowvram: loaded module regularly {}".format(m))

        self.model_lowvram = True
        return self.model

302
303
304
305
306
307
308
309
310
311
312
313
314
    def calculate_weight(self, patches, weight, key):
        for p in patches:
            alpha = p[0]
            v = p[1]
            strength_model = p[2]

            if strength_model != 1.0:
                weight *= strength_model

            if isinstance(v, list):
                v = (self.calculate_weight(v[1:], v[0].clone(), key), )

            if len(v) == 1:
comfyanonymous's avatar
comfyanonymous committed
315
316
317
318
319
320
                patch_type = "diff"
            elif len(v) == 2:
                patch_type = v[0]
                v = v[1]

            if patch_type == "diff":
321
322
323
                w1 = v[0]
                if alpha != 0.0:
                    if w1.shape != weight.shape:
324
                        logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
325
                    else:
326
                        weight += alpha * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype)
comfyanonymous's avatar
comfyanonymous committed
327
            elif patch_type == "lora": #lora/locon
328
329
                mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
                mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
330
                dora_scale = v[4]
331
332
333
334
                if v[2] is not None:
                    alpha *= v[2] / mat2.shape[0]
                if v[3] is not None:
                    #locon mid weights, hopefully the math is fine because I didn't properly test it
335
                    mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32)
336
337
338
339
                    final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
                    mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
                try:
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype)
340
341
                    if dora_scale is not None:
                        weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight)
342
                except Exception as e:
343
                    logging.error("ERROR {} {} {}".format(patch_type, key, e))
comfyanonymous's avatar
comfyanonymous committed
344
            elif patch_type == "lokr":
345
346
347
348
349
350
351
                w1 = v[0]
                w2 = v[1]
                w1_a = v[3]
                w1_b = v[4]
                w2_a = v[5]
                w2_b = v[6]
                t2 = v[7]
352
                dora_scale = v[8]
353
354
355
356
                dim = None

                if w1 is None:
                    dim = w1_b.shape[0]
357
358
                    w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32),
                                  comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32))
359
                else:
360
                    w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32)
361
362
363
364

                if w2 is None:
                    dim = w2_b.shape[0]
                    if t2 is None:
365
366
                        w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32))
367
                    else:
368
369
370
371
                        w2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                          comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
                                          comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32),
                                          comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32))
372
                else:
373
                    w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32)
374
375
376
377
378
379
380
381

                if len(w2.shape) == 4:
                    w1 = w1.unsqueeze(2).unsqueeze(2)
                if v[2] is not None and dim is not None:
                    alpha *= v[2] / dim

                try:
                    weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
382
383
                    if dora_scale is not None:
                        weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight)
384
                except Exception as e:
385
                    logging.error("ERROR {} {} {}".format(patch_type, key, e))
comfyanonymous's avatar
comfyanonymous committed
386
            elif patch_type == "loha":
387
388
389
390
391
392
                w1a = v[0]
                w1b = v[1]
                if v[2] is not None:
                    alpha *= v[2] / w1b.shape[0]
                w2a = v[3]
                w2b = v[4]
393
                dora_scale = v[7]
394
395
396
                if v[5] is not None: #cp decomposition
                    t1 = v[5]
                    t2 = v[6]
397
398
399
400
401
402
403
404
405
                    m1 = torch.einsum('i j k l, j r, i p -> p r k l',
                                      comfy.model_management.cast_to_device(t1, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w1b, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w1a, weight.device, torch.float32))

                    m2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                      comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w2b, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w2a, weight.device, torch.float32))
406
                else:
407
408
409
410
                    m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32),
                                  comfy.model_management.cast_to_device(w1b, weight.device, torch.float32))
                    m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32),
                                  comfy.model_management.cast_to_device(w2b, weight.device, torch.float32))
411
412
413

                try:
                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
414
415
                    if dora_scale is not None:
                        weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight)
416
                except Exception as e:
417
                    logging.error("ERROR {} {} {}".format(patch_type, key, e))
comfyanonymous's avatar
comfyanonymous committed
418
419
420
421
            elif patch_type == "glora":
                if v[4] is not None:
                    alpha *= v[4] / v[0].shape[0]

422
423
                dora_scale = v[5]

comfyanonymous's avatar
comfyanonymous committed
424
425
426
427
428
                a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32)
                a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32)
                b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
                b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)

429
430
                try:
                    weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype)
431
432
                    if dora_scale is not None:
                        weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight)
433
434
                except Exception as e:
                    logging.error("ERROR {} {} {}".format(patch_type, key, e))
comfyanonymous's avatar
comfyanonymous committed
435
            else:
436
                logging.warning("patch type not recognized {} {}".format(patch_type, key))
437
438
439

        return weight

440
441
442
443
444
445
446
447
448
    def unpatch_model(self, device_to=None, unpatch_weights=True):
        if unpatch_weights:
            if self.model_lowvram:
                for m in self.model.modules():
                    if hasattr(m, "prev_comfy_cast_weights"):
                        m.comfy_cast_weights = m.prev_comfy_cast_weights
                        del m.prev_comfy_cast_weights
                    m.weight_function = None
                    m.bias_function = None
449

450
                self.model_lowvram = False
451

452
            keys = list(self.backup.keys())
453

454
455
456
457
458
459
            if self.weight_inplace_update:
                for k in keys:
                    comfy.utils.copy_to_param(self.model, k, self.backup[k])
            else:
                for k in keys:
                    comfy.utils.set_attr_param(self.model, k, self.backup[k])
460

461
            self.backup.clear()
462

463
464
465
            if device_to is not None:
                self.model.to(device_to)
                self.current_device = device_to
466
467
468

        keys = list(self.object_patches_backup.keys())
        for k in keys:
469
            comfy.utils.set_attr(self.model, k, self.object_patches_backup[k])
470
471

        self.object_patches_backup = {}