model_base.py 10.7 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import torch
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
5
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
comfyanonymous's avatar
comfyanonymous committed
6
import comfy.model_management
comfyanonymous's avatar
comfyanonymous committed
7
import numpy as np
8
from enum import Enum
9
from . import utils
comfyanonymous's avatar
comfyanonymous committed
10

11
12
13
14
class ModelType(Enum):
    EPS = 1
    V_PREDICTION = 2

comfyanonymous's avatar
comfyanonymous committed
15
class BaseModel(torch.nn.Module):
16
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
comfyanonymous's avatar
comfyanonymous committed
17
18
        super().__init__()

19
20
        unet_config = model_config.unet_config
        self.latent_format = model_config.latent_format
21
        self.model_config = model_config
22
23
24
        self.register_schedule(given_betas=None, beta_schedule=model_config.beta_schedule, timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3)
        if not unet_config.get("disable_unet_model_creation", False):
            self.diffusion_model = UNetModel(**unet_config, device=device)
25
        self.model_type = model_type
26
27
        self.adm_channels = unet_config.get("adm_in_channels", None)
        if self.adm_channels is None:
comfyanonymous's avatar
comfyanonymous committed
28
            self.adm_channels = 0
29
        self.inpaint_model = False
30
        print("model_type", model_type.name)
comfyanonymous's avatar
comfyanonymous committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
        print("adm", self.adm_channels)

    def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        if given_betas is not None:
            betas = given_betas
        else:
            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
        alphas = 1. - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end

        self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
        self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
        self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))

    def apply_model(self, x, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}):
        if c_concat is not None:
54
            xc = torch.cat([x] + [c_concat], dim=1)
comfyanonymous's avatar
comfyanonymous committed
55
56
        else:
            xc = x
57
        context = c_crossattn
58
59
60
61
62
63
64
        dtype = self.get_dtype()
        xc = xc.to(dtype)
        t = t.to(dtype)
        context = context.to(dtype)
        if c_adm is not None:
            c_adm = c_adm.to(dtype)
        return self.diffusion_model(xc, t, context=context, y=c_adm, control=control, transformer_options=transformer_options).float()
comfyanonymous's avatar
comfyanonymous committed
65
66
67
68
69
70
71

    def get_dtype(self):
        return self.diffusion_model.dtype

    def is_adm(self):
        return self.adm_channels > 0

72
73
74
    def encode_adm(self, **kwargs):
        return None

75
76
77
78
79
80
81
    def cond_concat(self, **kwargs):
        if self.inpaint_model:
            concat_keys = ("mask", "masked_image")
            cond_concat = []
            denoise_mask = kwargs.get("denoise_mask", None)
            latent_image = kwargs.get("latent_image", None)
            noise = kwargs.get("noise", None)
82
            device = kwargs["device"]
83
84
85
86
87
88
89
90
91
92
93
94
95

            def blank_inpaint_image_like(latent_image):
                blank_image = torch.ones_like(latent_image)
                # these are the values for "zero" in pixel space translated to latent space
                blank_image[:,0] *= 0.8223
                blank_image[:,1] *= -0.6876
                blank_image[:,2] *= 0.6364
                blank_image[:,3] *= 0.1380
                return blank_image

            for ck in concat_keys:
                if denoise_mask is not None:
                    if ck == "mask":
96
                        cond_concat.append(denoise_mask[:,:1].to(device))
97
                    elif ck == "masked_image":
98
                        cond_concat.append(latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
99
100
101
102
103
104
105
106
                else:
                    if ck == "mask":
                        cond_concat.append(torch.ones_like(noise)[:,:1])
                    elif ck == "masked_image":
                        cond_concat.append(blank_inpaint_image_like(noise))
            return cond_concat
        return None

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    def load_model_weights(self, sd, unet_prefix=""):
        to_load = {}
        keys = list(sd.keys())
        for k in keys:
            if k.startswith(unet_prefix):
                to_load[k[len(unet_prefix):]] = sd.pop(k)

        m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
        if len(m) > 0:
            print("unet missing:", m)

        if len(u) > 0:
            print("unet unexpected:", u)
        del to_load
        return self

123
124
125
126
127
128
    def process_latent_in(self, latent):
        return self.latent_format.process_in(latent)

    def process_latent_out(self, latent):
        return self.latent_format.process_out(latent)

129
130
    def state_dict_for_saving(self, clip_state_dict, vae_state_dict):
        clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict)
comfyanonymous's avatar
comfyanonymous committed
131
132
133
134
135
        unet_sd = self.diffusion_model.state_dict()
        unet_state_dict = {}
        for k in unet_sd:
            unet_state_dict[k] = comfy.model_management.resolve_lowvram_weight(unet_sd[k], self.diffusion_model, k)

136
137
138
139
140
        unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
        vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
        if self.get_dtype() == torch.float16:
            clip_state_dict = utils.convert_sd_to(clip_state_dict, torch.float16)
            vae_state_dict = utils.convert_sd_to(vae_state_dict, torch.float16)
141
142
143
144

        if self.model_type == ModelType.V_PREDICTION:
            unet_state_dict["v_pred"] = torch.tensor([])

145
146
        return {**unet_state_dict, **vae_state_dict, **clip_state_dict}

comfyanonymous's avatar
comfyanonymous committed
147
    def set_inpaint(self):
148
        self.inpaint_model = True
comfyanonymous's avatar
comfyanonymous committed
149

comfyanonymous's avatar
comfyanonymous committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
    adm_inputs = []
    weights = []
    noise_aug = []
    for unclip_cond in unclip_conditioning:
        for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
            weight = unclip_cond["strength"]
            noise_augment = unclip_cond["noise_augmentation"]
            noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
            c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
            adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
            weights.append(weight)
            noise_aug.append(noise_augment)
            adm_inputs.append(adm_out)

    if len(noise_aug) > 1:
        adm_out = torch.stack(adm_inputs).sum(0)
        noise_augment = noise_augment_merge
        noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
        c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
        adm_out = torch.cat((c_adm, noise_level_emb), 1)

    return adm_out
173

comfyanonymous's avatar
comfyanonymous committed
174
class SD21UNCLIP(BaseModel):
175
176
    def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
        super().__init__(model_config, model_type, device=device)
comfyanonymous's avatar
comfyanonymous committed
177
178
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)

179
180
181
    def encode_adm(self, **kwargs):
        unclip_conditioning = kwargs.get("unclip_conditioning", None)
        device = kwargs["device"]
comfyanonymous's avatar
comfyanonymous committed
182
183
        if unclip_conditioning is None:
            return torch.zeros((1, self.adm_channels))
184
        else:
comfyanonymous's avatar
comfyanonymous committed
185
            return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05))
186

187
188
189
190
191
192
def sdxl_pooled(args, noise_augmentor):
    if "unclip_conditioning" in args:
        return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor)[:,:1280]
    else:
        return args["pooled_output"]

193
class SDXLRefiner(BaseModel):
194
195
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
196
        self.embedder = Timestep(256)
197
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
198
199

    def encode_adm(self, **kwargs):
200
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
201
202
203
204
205
206
207
208
209
210
211
212
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)

        if kwargs.get("prompt_type", "") == "negative":
            aesthetic_score = kwargs.get("aesthetic_score", 2.5)
        else:
            aesthetic_score = kwargs.get("aesthetic_score", 6)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
comfyanonymous's avatar
comfyanonymous committed
213
        out.append(self.embedder(torch.Tensor([width])))
214
        out.append(self.embedder(torch.Tensor([crop_h])))
comfyanonymous's avatar
comfyanonymous committed
215
        out.append(self.embedder(torch.Tensor([crop_w])))
216
        out.append(self.embedder(torch.Tensor([aesthetic_score])))
217
        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
218
219
220
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)

class SDXL(BaseModel):
221
222
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
223
        self.embedder = Timestep(256)
224
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
225
226

    def encode_adm(self, **kwargs):
227
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
228
229
230
231
232
233
234
235
236
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)
        target_width = kwargs.get("target_width", width)
        target_height = kwargs.get("target_height", height)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
comfyanonymous's avatar
comfyanonymous committed
237
        out.append(self.embedder(torch.Tensor([width])))
238
        out.append(self.embedder(torch.Tensor([crop_h])))
comfyanonymous's avatar
comfyanonymous committed
239
        out.append(self.embedder(torch.Tensor([crop_w])))
240
        out.append(self.embedder(torch.Tensor([target_height])))
comfyanonymous's avatar
comfyanonymous committed
241
        out.append(self.embedder(torch.Tensor([target_width])))
242
        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
243
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)