"git@developer.sourcefind.cn:sugon_wxj/megatron-lm.git" did not exist on "cb5e611d74057c2ea2ef79f816927b5f351eb4e8"
openaimodel.py 35.3 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
from abc import abstractmethod

import torch as th
import torch.nn as nn
import torch.nn.functional as F
comfyanonymous's avatar
comfyanonymous committed
6
from einops import rearrange
7
import logging
comfyanonymous's avatar
comfyanonymous committed
8

comfyanonymous's avatar
comfyanonymous committed
9
from .util import (
comfyanonymous's avatar
comfyanonymous committed
10
11
12
13
    checkpoint,
    avg_pool_nd,
    zero_module,
    timestep_embedding,
comfyanonymous's avatar
comfyanonymous committed
14
    AlphaBlender,
comfyanonymous's avatar
comfyanonymous committed
15
)
comfyanonymous's avatar
comfyanonymous committed
16
from ..attention import SpatialTransformer, SpatialVideoTransformer, default
comfyanonymous's avatar
comfyanonymous committed
17
from comfy.ldm.util import exists
comfyanonymous's avatar
comfyanonymous committed
18
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
19
ops = comfy.ops.disable_weight_init
comfyanonymous's avatar
comfyanonymous committed
20
21
22
23
24
25
26
27
28
29
30
31

class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """

32
#This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index"
comfyanonymous's avatar
comfyanonymous committed
33
def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None):
34
    for layer in ts:
comfyanonymous's avatar
comfyanonymous committed
35
36
37
        if isinstance(layer, VideoResBlock):
            x = layer(x, emb, num_video_frames, image_only_indicator)
        elif isinstance(layer, TimestepBlock):
38
            x = layer(x, emb)
comfyanonymous's avatar
comfyanonymous committed
39
40
        elif isinstance(layer, SpatialVideoTransformer):
            x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options)
41
42
            if "transformer_index" in transformer_options:
                transformer_options["transformer_index"] += 1
43
44
        elif isinstance(layer, SpatialTransformer):
            x = layer(x, context, transformer_options)
45
46
            if "transformer_index" in transformer_options:
                transformer_options["transformer_index"] += 1
47
48
49
50
51
        elif isinstance(layer, Upsample):
            x = layer(x, output_shape=output_shape)
        else:
            x = layer(x)
    return x
comfyanonymous's avatar
comfyanonymous committed
52

comfyanonymous's avatar
comfyanonymous committed
53
54
55
56
57
58
59
60
61
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
    A sequential module that passes timestep embeddings to the children that
    support it as an extra input.
    """

    def forward(self, *args, **kwargs):
        return forward_timestep_embed(self, *args, **kwargs)

comfyanonymous's avatar
comfyanonymous committed
62
63
64
65
66
67
68
69
70
class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 upsampling occurs in the inner-two dimensions.
    """

comfyanonymous's avatar
comfyanonymous committed
71
    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
72
73
74
75
76
77
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        if use_conv:
comfyanonymous's avatar
comfyanonymous committed
78
            self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
79

80
    def forward(self, x, output_shape=None):
comfyanonymous's avatar
comfyanonymous committed
81
82
        assert x.shape[1] == self.channels
        if self.dims == 3:
83
84
85
86
            shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
            if output_shape is not None:
                shape[1] = output_shape[3]
                shape[2] = output_shape[4]
comfyanonymous's avatar
comfyanonymous committed
87
        else:
88
89
90
91
92
93
            shape = [x.shape[2] * 2, x.shape[3] * 2]
            if output_shape is not None:
                shape[0] = output_shape[2]
                shape[1] = output_shape[3]

        x = F.interpolate(x, size=shape, mode="nearest")
comfyanonymous's avatar
comfyanonymous committed
94
95
96
97
98
99
100
101
102
103
104
105
106
        if self.use_conv:
            x = self.conv(x)
        return x

class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

comfyanonymous's avatar
comfyanonymous committed
107
    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
108
109
110
111
112
113
114
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
comfyanonymous's avatar
comfyanonymous committed
115
            self.op = operations.conv_nd(
116
                dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
            )
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.op(x)


class ResBlock(TimestepBlock):
    """
    A residual block that can optionally change the number of channels.
    :param channels: the number of input channels.
    :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout.
    :param out_channels: if specified, the number of out channels.
    :param use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the
        channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param use_checkpoint: if True, use gradient checkpointing on this module.
    :param up: if True, use this block for upsampling.
    :param down: if True, use this block for downsampling.
    """

    def __init__(
        self,
        channels,
        emb_channels,
        dropout,
        out_channels=None,
        use_conv=False,
        use_scale_shift_norm=False,
        dims=2,
        use_checkpoint=False,
        up=False,
        down=False,
comfyanonymous's avatar
comfyanonymous committed
155
156
157
        kernel_size=3,
        exchange_temb_dims=False,
        skip_t_emb=False,
158
159
        dtype=None,
        device=None,
comfyanonymous's avatar
comfyanonymous committed
160
        operations=ops
comfyanonymous's avatar
comfyanonymous committed
161
162
163
164
165
166
167
168
169
    ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm
comfyanonymous's avatar
comfyanonymous committed
170
171
172
173
174
175
        self.exchange_temb_dims = exchange_temb_dims

        if isinstance(kernel_size, list):
            padding = [k // 2 for k in kernel_size]
        else:
            padding = kernel_size // 2
comfyanonymous's avatar
comfyanonymous committed
176
177

        self.in_layers = nn.Sequential(
178
            operations.GroupNorm(32, channels, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
179
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
180
            operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
181
182
183
184
185
        )

        self.updown = up or down

        if up:
186
187
            self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
            self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
188
        elif down:
189
190
            self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
            self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
191
192
193
        else:
            self.h_upd = self.x_upd = nn.Identity()

comfyanonymous's avatar
comfyanonymous committed
194
195
196
197
198
199
200
201
202
203
204
205
        self.skip_t_emb = skip_t_emb
        if self.skip_t_emb:
            self.emb_layers = None
            self.exchange_temb_dims = False
        else:
            self.emb_layers = nn.Sequential(
                nn.SiLU(),
                operations.Linear(
                    emb_channels,
                    2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
                ),
            )
comfyanonymous's avatar
comfyanonymous committed
206
        self.out_layers = nn.Sequential(
207
            operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
208
209
            nn.SiLU(),
            nn.Dropout(p=dropout),
210
211
            operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device)
            ,
comfyanonymous's avatar
comfyanonymous committed
212
213
214
215
216
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
comfyanonymous's avatar
comfyanonymous committed
217
            self.skip_connection = operations.conv_nd(
comfyanonymous's avatar
comfyanonymous committed
218
                dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
219
220
            )
        else:
comfyanonymous's avatar
comfyanonymous committed
221
            self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

    def forward(self, x, emb):
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.
        :param x: an [N x C x ...] Tensor of features.
        :param emb: an [N x emb_channels] Tensor of timestep embeddings.
        :return: an [N x C x ...] Tensor of outputs.
        """
        return checkpoint(
            self._forward, (x, emb), self.parameters(), self.use_checkpoint
        )


    def _forward(self, x, emb):
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)
comfyanonymous's avatar
comfyanonymous committed
244
245
246
247
248
249

        emb_out = None
        if not self.skip_t_emb:
            emb_out = self.emb_layers(emb).type(h.dtype)
            while len(emb_out.shape) < len(h.shape):
                emb_out = emb_out[..., None]
comfyanonymous's avatar
comfyanonymous committed
250
251
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
comfyanonymous's avatar
comfyanonymous committed
252
253
254
255
256
            h = out_norm(h)
            if emb_out is not None:
                scale, shift = th.chunk(emb_out, 2, dim=1)
                h *= (1 + scale)
                h += shift
comfyanonymous's avatar
comfyanonymous committed
257
258
            h = out_rest(h)
        else:
comfyanonymous's avatar
comfyanonymous committed
259
260
261
262
            if emb_out is not None:
                if self.exchange_temb_dims:
                    emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
                h = h + emb_out
comfyanonymous's avatar
comfyanonymous committed
263
264
265
            h = self.out_layers(h)
        return self.skip_connection(x) + h

comfyanonymous's avatar
comfyanonymous committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

class VideoResBlock(ResBlock):
    def __init__(
        self,
        channels: int,
        emb_channels: int,
        dropout: float,
        video_kernel_size=3,
        merge_strategy: str = "fixed",
        merge_factor: float = 0.5,
        out_channels=None,
        use_conv: bool = False,
        use_scale_shift_norm: bool = False,
        dims: int = 2,
        use_checkpoint: bool = False,
        up: bool = False,
        down: bool = False,
        dtype=None,
        device=None,
comfyanonymous's avatar
comfyanonymous committed
285
        operations=ops
comfyanonymous's avatar
comfyanonymous committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    ):
        super().__init__(
            channels,
            emb_channels,
            dropout,
            out_channels=out_channels,
            use_conv=use_conv,
            use_scale_shift_norm=use_scale_shift_norm,
            dims=dims,
            use_checkpoint=use_checkpoint,
            up=up,
            down=down,
            dtype=dtype,
            device=device,
            operations=operations
        )

        self.time_stack = ResBlock(
            default(out_channels, channels),
            emb_channels,
            dropout=dropout,
            dims=3,
            out_channels=default(out_channels, channels),
            use_scale_shift_norm=False,
            use_conv=False,
            up=False,
            down=False,
            kernel_size=video_kernel_size,
            use_checkpoint=use_checkpoint,
            exchange_temb_dims=True,
            dtype=dtype,
            device=device,
            operations=operations
        )
        self.time_mixer = AlphaBlender(
            alpha=merge_factor,
            merge_strategy=merge_strategy,
            rearrange_pattern="b t -> b 1 t 1 1",
        )

    def forward(
        self,
        x: th.Tensor,
        emb: th.Tensor,
        num_video_frames: int,
        image_only_indicator = None,
    ) -> th.Tensor:
        x = super().forward(x, emb)

        x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
        x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)

        x = self.time_stack(
            x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames)
        )
        x = self.time_mixer(
            x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator
        )
        x = rearrange(x, "b c t h w -> (b t) c h w")
        return x


348
349
350
351
352
353
354
355
class Timestep(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, t):
        return timestep_embedding(t, self.dim)

comfyanonymous's avatar
comfyanonymous committed
356
357
358
359
def apply_control(h, control, name):
    if control is not None and name in control and len(control[name]) > 0:
        ctrl = control[name].pop()
        if ctrl is not None:
360
361
362
            try:
                h += ctrl
            except:
363
                logging.warning("warning control could not be applied {} {}".format(h.shape, ctrl.shape))
comfyanonymous's avatar
comfyanonymous committed
364
    return h
365

comfyanonymous's avatar
comfyanonymous committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
class UNetModel(nn.Module):
    """
    The full UNet model with attention and timestep embedding.
    :param in_channels: channels in the input Tensor.
    :param model_channels: base channel count for the model.
    :param out_channels: channels in the output Tensor.
    :param num_res_blocks: number of residual blocks per downsample.
    :param dropout: the dropout probability.
    :param channel_mult: channel multiplier for each level of the UNet.
    :param conv_resample: if True, use learned convolutions for upsampling and
        downsampling.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param num_classes: if specified (as an int), then this model will be
        class-conditional with `num_classes` classes.
    :param use_checkpoint: use gradient checkpointing to reduce memory usage.
    :param num_heads: the number of attention heads in each attention layer.
    :param num_heads_channels: if specified, ignore num_heads and instead use
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
    :param resblock_updown: use residual blocks for up/downsampling.
    :param use_new_attention_order: use a different attention pattern for potentially
                                    increased efficiency.
    """

    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        num_classes=None,
        use_checkpoint=False,
405
        dtype=th.float32,
comfyanonymous's avatar
comfyanonymous committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
        num_heads=-1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
        use_spatial_transformer=False,    # custom transformer support
        transformer_depth=1,              # custom transformer support
        context_dim=None,                 # custom transformer support
        n_embed=None,                     # custom support for prediction of discrete ids into codebook of first stage vq model
        legacy=True,
        disable_self_attentions=None,
        num_attention_blocks=None,
        disable_middle_self_attn=False,
        use_linear_in_transformer=False,
421
        adm_in_channels=None,
422
        transformer_depth_middle=None,
423
        transformer_depth_output=None,
comfyanonymous's avatar
comfyanonymous committed
424
425
426
427
428
429
430
431
432
433
        use_temporal_resblock=False,
        use_temporal_attention=False,
        time_context_dim=None,
        extra_ff_mix_layer=False,
        use_spatial_context=False,
        merge_strategy=None,
        merge_factor=0.0,
        video_kernel_size=None,
        disable_temporal_crossattention=False,
        max_ddpm_temb_period=10000,
434
        attn_precision=None,
435
        device=None,
comfyanonymous's avatar
comfyanonymous committed
436
        operations=ops,
comfyanonymous's avatar
comfyanonymous committed
437
438
439
440
441
    ):
        super().__init__()

        if context_dim is not None:
            assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
442
443
444
            # from omegaconf.listconfig import ListConfig
            # if type(context_dim) == ListConfig:
            #     context_dim = list(context_dim)
comfyanonymous's avatar
comfyanonymous committed
445
446
447
448
449
450
451
452
453
454
455
456
457

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'

        if num_head_channels == -1:
            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'

        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
458

comfyanonymous's avatar
comfyanonymous committed
459
460
461
462
463
464
465
        if isinstance(num_res_blocks, int):
            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
        else:
            if len(num_res_blocks) != len(channel_mult):
                raise ValueError("provide num_res_blocks either as an int (globally constant) or "
                                 "as a list/tuple (per-level) with the same length as channel_mult")
            self.num_res_blocks = num_res_blocks
466

comfyanonymous's avatar
comfyanonymous committed
467
468
469
470
471
472
        if disable_self_attentions is not None:
            # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
            assert len(disable_self_attentions) == len(channel_mult)
        if num_attention_blocks is not None:
            assert len(num_attention_blocks) == len(self.num_res_blocks)

473
474
475
        transformer_depth = transformer_depth[:]
        transformer_depth_output = transformer_depth_output[:]

comfyanonymous's avatar
comfyanonymous committed
476
477
478
479
480
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
481
        self.dtype = dtype
comfyanonymous's avatar
comfyanonymous committed
482
483
484
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
comfyanonymous's avatar
comfyanonymous committed
485
        self.use_temporal_resblocks = use_temporal_resblock
comfyanonymous's avatar
comfyanonymous committed
486
487
        self.predict_codebook_ids = n_embed is not None

comfyanonymous's avatar
comfyanonymous committed
488
489
        self.default_num_video_frames = None

comfyanonymous's avatar
comfyanonymous committed
490
491
        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
492
            operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
493
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
494
            operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
495
496
497
498
        )

        if self.num_classes is not None:
            if isinstance(self.num_classes, int):
499
                self.label_emb = nn.Embedding(num_classes, time_embed_dim, dtype=self.dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
500
            elif self.num_classes == "continuous":
501
                logging.debug("setting up linear c_adm embedding layer")
comfyanonymous's avatar
comfyanonymous committed
502
                self.label_emb = nn.Linear(1, time_embed_dim)
503
504
505
506
            elif self.num_classes == "sequential":
                assert adm_in_channels is not None
                self.label_emb = nn.Sequential(
                    nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
507
                        operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
508
                        nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
509
                        operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
510
511
                    )
                )
comfyanonymous's avatar
comfyanonymous committed
512
513
514
515
516
517
            else:
                raise ValueError()

        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
comfyanonymous's avatar
comfyanonymous committed
518
                    operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
519
520
521
522
523
524
525
                )
            ]
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
comfyanonymous's avatar
comfyanonymous committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553

        def get_attention_layer(
            ch,
            num_heads,
            dim_head,
            depth=1,
            context_dim=None,
            use_checkpoint=False,
            disable_self_attn=False,
        ):
            if use_temporal_attention:
                return SpatialVideoTransformer(
                    ch,
                    num_heads,
                    dim_head,
                    depth=depth,
                    context_dim=context_dim,
                    time_context_dim=time_context_dim,
                    dropout=dropout,
                    ff_in=extra_ff_mix_layer,
                    use_spatial_context=use_spatial_context,
                    merge_strategy=merge_strategy,
                    merge_factor=merge_factor,
                    checkpoint=use_checkpoint,
                    use_linear=use_linear_in_transformer,
                    disable_self_attn=disable_self_attn,
                    disable_temporal_crossattention=disable_temporal_crossattention,
                    max_time_embed_period=max_ddpm_temb_period,
554
                    attn_precision=attn_precision,
comfyanonymous's avatar
comfyanonymous committed
555
556
557
558
559
560
                    dtype=self.dtype, device=device, operations=operations
                )
            else:
                return SpatialTransformer(
                                ch, num_heads, dim_head, depth=depth, context_dim=context_dim,
                                disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer,
561
                                use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
                            )

        def get_resblock(
            merge_factor,
            merge_strategy,
            video_kernel_size,
            ch,
            time_embed_dim,
            dropout,
            out_channels,
            dims,
            use_checkpoint,
            use_scale_shift_norm,
            down=False,
            up=False,
            dtype=None,
            device=None,
comfyanonymous's avatar
comfyanonymous committed
579
            operations=ops
comfyanonymous's avatar
comfyanonymous committed
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
        ):
            if self.use_temporal_resblocks:
                return VideoResBlock(
                    merge_factor=merge_factor,
                    merge_strategy=merge_strategy,
                    video_kernel_size=video_kernel_size,
                    channels=ch,
                    emb_channels=time_embed_dim,
                    dropout=dropout,
                    out_channels=out_channels,
                    dims=dims,
                    use_checkpoint=use_checkpoint,
                    use_scale_shift_norm=use_scale_shift_norm,
                    down=down,
                    up=up,
                    dtype=dtype,
                    device=device,
                    operations=operations
                )
            else:
                return ResBlock(
                    channels=ch,
                    emb_channels=time_embed_dim,
                    dropout=dropout,
                    out_channels=out_channels,
                    use_checkpoint=use_checkpoint,
                    dims=dims,
                    use_scale_shift_norm=use_scale_shift_norm,
                    down=down,
                    up=up,
                    dtype=dtype,
                    device=device,
                    operations=operations
                )

comfyanonymous's avatar
comfyanonymous committed
615
616
617
        for level, mult in enumerate(channel_mult):
            for nr in range(self.num_res_blocks[level]):
                layers = [
comfyanonymous's avatar
comfyanonymous committed
618
619
620
621
622
623
624
                    get_resblock(
                        merge_factor=merge_factor,
                        merge_strategy=merge_strategy,
                        video_kernel_size=video_kernel_size,
                        ch=ch,
                        time_embed_dim=time_embed_dim,
                        dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
625
626
627
628
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
629
630
                        dtype=self.dtype,
                        device=device,
comfyanonymous's avatar
comfyanonymous committed
631
                        operations=operations,
comfyanonymous's avatar
comfyanonymous committed
632
633
634
                    )
                ]
                ch = mult * model_channels
635
636
                num_transformers = transformer_depth.pop(0)
                if num_transformers > 0:
comfyanonymous's avatar
comfyanonymous committed
637
638
639
640
641
642
643
644
645
646
647
648
649
650
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        #num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
comfyanonymous's avatar
comfyanonymous committed
651
                        layers.append(get_attention_layer(
652
                                ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
653
                                disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint)
comfyanonymous's avatar
comfyanonymous committed
654
655
656
657
658
659
660
661
                        )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
comfyanonymous's avatar
comfyanonymous committed
662
663
664
665
666
667
668
                        get_resblock(
                            merge_factor=merge_factor,
                            merge_strategy=merge_strategy,
                            video_kernel_size=video_kernel_size,
                            ch=ch,
                            time_embed_dim=time_embed_dim,
                            dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
669
670
671
672
673
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
674
675
                            dtype=self.dtype,
                            device=device,
comfyanonymous's avatar
comfyanonymous committed
676
                            operations=operations
comfyanonymous's avatar
comfyanonymous committed
677
678
679
                        )
                        if resblock_updown
                        else Downsample(
comfyanonymous's avatar
comfyanonymous committed
680
                            ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
                        )
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
            #num_heads = 1
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
697
        mid_block = [
comfyanonymous's avatar
comfyanonymous committed
698
699
700
701
702
703
704
705
            get_resblock(
                merge_factor=merge_factor,
                merge_strategy=merge_strategy,
                video_kernel_size=video_kernel_size,
                ch=ch,
                time_embed_dim=time_embed_dim,
                dropout=dropout,
                out_channels=None,
comfyanonymous's avatar
comfyanonymous committed
706
707
708
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
709
710
                dtype=self.dtype,
                device=device,
comfyanonymous's avatar
comfyanonymous committed
711
                operations=operations
712
            )]
comfyanonymous's avatar
comfyanonymous committed
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

        self.middle_block = None
        if transformer_depth_middle >= -1:
            if transformer_depth_middle >= 0:
                mid_block += [get_attention_layer(  # always uses a self-attn
                                ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
                                disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint
                            ),
                get_resblock(
                    merge_factor=merge_factor,
                    merge_strategy=merge_strategy,
                    video_kernel_size=video_kernel_size,
                    ch=ch,
                    time_embed_dim=time_embed_dim,
                    dropout=dropout,
                    out_channels=None,
                    dims=dims,
                    use_checkpoint=use_checkpoint,
                    use_scale_shift_norm=use_scale_shift_norm,
                    dtype=self.dtype,
                    device=device,
                    operations=operations
                )]
            self.middle_block = TimestepEmbedSequential(*mid_block)
comfyanonymous's avatar
comfyanonymous committed
737
738
739
740
741
742
743
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(self.num_res_blocks[level] + 1):
                ich = input_block_chans.pop()
                layers = [
comfyanonymous's avatar
comfyanonymous committed
744
745
746
747
748
749
750
                    get_resblock(
                        merge_factor=merge_factor,
                        merge_strategy=merge_strategy,
                        video_kernel_size=video_kernel_size,
                        ch=ch + ich,
                        time_embed_dim=time_embed_dim,
                        dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
751
752
753
754
                        out_channels=model_channels * mult,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
755
756
                        dtype=self.dtype,
                        device=device,
comfyanonymous's avatar
comfyanonymous committed
757
                        operations=operations
comfyanonymous's avatar
comfyanonymous committed
758
759
760
                    )
                ]
                ch = model_channels * mult
761
762
                num_transformers = transformer_depth_output.pop()
                if num_transformers > 0:
comfyanonymous's avatar
comfyanonymous committed
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        #num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
                        layers.append(
comfyanonymous's avatar
comfyanonymous committed
778
                            get_attention_layer(
779
                                ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
780
                                disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint
comfyanonymous's avatar
comfyanonymous committed
781
782
783
784
785
                            )
                        )
                if level and i == self.num_res_blocks[level]:
                    out_ch = ch
                    layers.append(
comfyanonymous's avatar
comfyanonymous committed
786
787
788
789
790
791
792
                        get_resblock(
                            merge_factor=merge_factor,
                            merge_strategy=merge_strategy,
                            video_kernel_size=video_kernel_size,
                            ch=ch,
                            time_embed_dim=time_embed_dim,
                            dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
793
794
795
796
797
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            up=True,
798
799
                            dtype=self.dtype,
                            device=device,
comfyanonymous's avatar
comfyanonymous committed
800
                            operations=operations
comfyanonymous's avatar
comfyanonymous committed
801
802
                        )
                        if resblock_updown
comfyanonymous's avatar
comfyanonymous committed
803
                        else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
804
805
806
807
808
809
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
810
            operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
811
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
812
            zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
comfyanonymous's avatar
comfyanonymous committed
813
814
815
        )
        if self.predict_codebook_ids:
            self.id_predictor = nn.Sequential(
816
            operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
817
            operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
818
819
820
            #nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
        )

821
    def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
comfyanonymous's avatar
comfyanonymous committed
822
823
824
825
826
827
828
829
        """
        Apply the model to an input batch.
        :param x: an [N x C x ...] Tensor of inputs.
        :param timesteps: a 1-D batch of timesteps.
        :param context: conditioning plugged in via crossattn
        :param y: an [N] Tensor of labels, if class-conditional.
        :return: an [N x C x ...] Tensor of outputs.
        """
830
        transformer_options["original_shape"] = list(x.shape)
831
        transformer_options["transformer_index"] = 0
832
        transformer_patches = transformer_options.get("patches", {})
833

comfyanonymous's avatar
comfyanonymous committed
834
        num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames)
835
        image_only_indicator = kwargs.get("image_only_indicator", None)
comfyanonymous's avatar
comfyanonymous committed
836
837
        time_context = kwargs.get("time_context", None)

comfyanonymous's avatar
comfyanonymous committed
838
839
840
841
        assert (y is not None) == (
            self.num_classes is not None
        ), "must specify y if and only if the model is class-conditional"
        hs = []
842
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
comfyanonymous's avatar
comfyanonymous committed
843
844
845
846
847
848
        emb = self.time_embed(t_emb)

        if self.num_classes is not None:
            assert y.shape[0] == x.shape[0]
            emb = emb + self.label_emb(y)

849
        h = x
comfyanonymous's avatar
comfyanonymous committed
850
        for id, module in enumerate(self.input_blocks):
851
            transformer_options["block"] = ("input", id)
comfyanonymous's avatar
comfyanonymous committed
852
            h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
comfyanonymous's avatar
comfyanonymous committed
853
            h = apply_control(h, control, 'input')
854
855
856
857
858
            if "input_block_patch" in transformer_patches:
                patch = transformer_patches["input_block_patch"]
                for p in patch:
                    h = p(h, transformer_options)

comfyanonymous's avatar
comfyanonymous committed
859
            hs.append(h)
860
861
862
863
            if "input_block_patch_after_skip" in transformer_patches:
                patch = transformer_patches["input_block_patch_after_skip"]
                for p in patch:
                    h = p(h, transformer_options)
comfyanonymous's avatar
comfyanonymous committed
864

865
        transformer_options["block"] = ("middle", 0)
comfyanonymous's avatar
comfyanonymous committed
866
867
        if self.middle_block is not None:
            h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
comfyanonymous's avatar
comfyanonymous committed
868
        h = apply_control(h, control, 'middle')
comfyanonymous's avatar
comfyanonymous committed
869

comfyanonymous's avatar
comfyanonymous committed
870

871
872
        for id, module in enumerate(self.output_blocks):
            transformer_options["block"] = ("output", id)
comfyanonymous's avatar
comfyanonymous committed
873
            hsp = hs.pop()
comfyanonymous's avatar
comfyanonymous committed
874
            hsp = apply_control(hsp, control, 'output')
875

876
877
878
879
880
            if "output_block_patch" in transformer_patches:
                patch = transformer_patches["output_block_patch"]
                for p in patch:
                    h, hsp = p(h, hsp, transformer_options)

comfyanonymous's avatar
comfyanonymous committed
881
            h = th.cat([h, hsp], dim=1)
comfyanonymous's avatar
comfyanonymous committed
882
            del hsp
883
884
885
886
            if len(hs) > 0:
                output_shape = hs[-1].shape
            else:
                output_shape = None
comfyanonymous's avatar
comfyanonymous committed
887
            h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
comfyanonymous's avatar
comfyanonymous committed
888
889
890
891
892
        h = h.type(x.dtype)
        if self.predict_codebook_ids:
            return self.id_predictor(h)
        else:
            return self.out(h)