openaimodel.py 35.2 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
from abc import abstractmethod

import torch as th
import torch.nn as nn
import torch.nn.functional as F
comfyanonymous's avatar
comfyanonymous committed
6
from einops import rearrange
comfyanonymous's avatar
comfyanonymous committed
7

comfyanonymous's avatar
comfyanonymous committed
8
from .util import (
comfyanonymous's avatar
comfyanonymous committed
9
10
11
12
    checkpoint,
    avg_pool_nd,
    zero_module,
    timestep_embedding,
comfyanonymous's avatar
comfyanonymous committed
13
    AlphaBlender,
comfyanonymous's avatar
comfyanonymous committed
14
)
comfyanonymous's avatar
comfyanonymous committed
15
from ..attention import SpatialTransformer, SpatialVideoTransformer, default
comfyanonymous's avatar
comfyanonymous committed
16
from comfy.ldm.util import exists
comfyanonymous's avatar
comfyanonymous committed
17
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
18
ops = comfy.ops.disable_weight_init
comfyanonymous's avatar
comfyanonymous committed
19
20
21
22
23
24
25
26
27
28
29
30

class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """

31
#This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index"
comfyanonymous's avatar
comfyanonymous committed
32
def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None):
33
    for layer in ts:
comfyanonymous's avatar
comfyanonymous committed
34
35
36
        if isinstance(layer, VideoResBlock):
            x = layer(x, emb, num_video_frames, image_only_indicator)
        elif isinstance(layer, TimestepBlock):
37
            x = layer(x, emb)
comfyanonymous's avatar
comfyanonymous committed
38
39
        elif isinstance(layer, SpatialVideoTransformer):
            x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options)
40
41
            if "transformer_index" in transformer_options:
                transformer_options["transformer_index"] += 1
42
43
        elif isinstance(layer, SpatialTransformer):
            x = layer(x, context, transformer_options)
44
45
            if "transformer_index" in transformer_options:
                transformer_options["transformer_index"] += 1
46
47
48
49
50
        elif isinstance(layer, Upsample):
            x = layer(x, output_shape=output_shape)
        else:
            x = layer(x)
    return x
comfyanonymous's avatar
comfyanonymous committed
51

comfyanonymous's avatar
comfyanonymous committed
52
53
54
55
56
57
58
59
60
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
    A sequential module that passes timestep embeddings to the children that
    support it as an extra input.
    """

    def forward(self, *args, **kwargs):
        return forward_timestep_embed(self, *args, **kwargs)

comfyanonymous's avatar
comfyanonymous committed
61
62
63
64
65
66
67
68
69
class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 upsampling occurs in the inner-two dimensions.
    """

comfyanonymous's avatar
comfyanonymous committed
70
    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
71
72
73
74
75
76
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        if use_conv:
comfyanonymous's avatar
comfyanonymous committed
77
            self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
78

79
    def forward(self, x, output_shape=None):
comfyanonymous's avatar
comfyanonymous committed
80
81
        assert x.shape[1] == self.channels
        if self.dims == 3:
82
83
84
85
            shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
            if output_shape is not None:
                shape[1] = output_shape[3]
                shape[2] = output_shape[4]
comfyanonymous's avatar
comfyanonymous committed
86
        else:
87
88
89
90
91
92
            shape = [x.shape[2] * 2, x.shape[3] * 2]
            if output_shape is not None:
                shape[0] = output_shape[2]
                shape[1] = output_shape[3]

        x = F.interpolate(x, size=shape, mode="nearest")
comfyanonymous's avatar
comfyanonymous committed
93
94
95
96
97
98
99
100
101
102
103
104
105
        if self.use_conv:
            x = self.conv(x)
        return x

class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

comfyanonymous's avatar
comfyanonymous committed
106
    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
107
108
109
110
111
112
113
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
comfyanonymous's avatar
comfyanonymous committed
114
            self.op = operations.conv_nd(
115
                dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
            )
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.op(x)


class ResBlock(TimestepBlock):
    """
    A residual block that can optionally change the number of channels.
    :param channels: the number of input channels.
    :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout.
    :param out_channels: if specified, the number of out channels.
    :param use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the
        channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param use_checkpoint: if True, use gradient checkpointing on this module.
    :param up: if True, use this block for upsampling.
    :param down: if True, use this block for downsampling.
    """

    def __init__(
        self,
        channels,
        emb_channels,
        dropout,
        out_channels=None,
        use_conv=False,
        use_scale_shift_norm=False,
        dims=2,
        use_checkpoint=False,
        up=False,
        down=False,
comfyanonymous's avatar
comfyanonymous committed
154
155
156
        kernel_size=3,
        exchange_temb_dims=False,
        skip_t_emb=False,
157
158
        dtype=None,
        device=None,
comfyanonymous's avatar
comfyanonymous committed
159
        operations=ops
comfyanonymous's avatar
comfyanonymous committed
160
161
162
163
164
165
166
167
168
    ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm
comfyanonymous's avatar
comfyanonymous committed
169
170
171
172
173
174
        self.exchange_temb_dims = exchange_temb_dims

        if isinstance(kernel_size, list):
            padding = [k // 2 for k in kernel_size]
        else:
            padding = kernel_size // 2
comfyanonymous's avatar
comfyanonymous committed
175
176

        self.in_layers = nn.Sequential(
177
            operations.GroupNorm(32, channels, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
178
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
179
            operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
180
181
182
183
184
        )

        self.updown = up or down

        if up:
185
186
            self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
            self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
187
        elif down:
188
189
            self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
            self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
190
191
192
        else:
            self.h_upd = self.x_upd = nn.Identity()

comfyanonymous's avatar
comfyanonymous committed
193
194
195
196
197
198
199
200
201
202
203
204
        self.skip_t_emb = skip_t_emb
        if self.skip_t_emb:
            self.emb_layers = None
            self.exchange_temb_dims = False
        else:
            self.emb_layers = nn.Sequential(
                nn.SiLU(),
                operations.Linear(
                    emb_channels,
                    2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
                ),
            )
comfyanonymous's avatar
comfyanonymous committed
205
        self.out_layers = nn.Sequential(
206
            operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
207
208
            nn.SiLU(),
            nn.Dropout(p=dropout),
209
210
            operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device)
            ,
comfyanonymous's avatar
comfyanonymous committed
211
212
213
214
215
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
comfyanonymous's avatar
comfyanonymous committed
216
            self.skip_connection = operations.conv_nd(
comfyanonymous's avatar
comfyanonymous committed
217
                dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
218
219
            )
        else:
comfyanonymous's avatar
comfyanonymous committed
220
            self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

    def forward(self, x, emb):
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.
        :param x: an [N x C x ...] Tensor of features.
        :param emb: an [N x emb_channels] Tensor of timestep embeddings.
        :return: an [N x C x ...] Tensor of outputs.
        """
        return checkpoint(
            self._forward, (x, emb), self.parameters(), self.use_checkpoint
        )


    def _forward(self, x, emb):
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)
comfyanonymous's avatar
comfyanonymous committed
243
244
245
246
247
248

        emb_out = None
        if not self.skip_t_emb:
            emb_out = self.emb_layers(emb).type(h.dtype)
            while len(emb_out.shape) < len(h.shape):
                emb_out = emb_out[..., None]
comfyanonymous's avatar
comfyanonymous committed
249
250
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
comfyanonymous's avatar
comfyanonymous committed
251
252
253
254
255
            h = out_norm(h)
            if emb_out is not None:
                scale, shift = th.chunk(emb_out, 2, dim=1)
                h *= (1 + scale)
                h += shift
comfyanonymous's avatar
comfyanonymous committed
256
257
            h = out_rest(h)
        else:
comfyanonymous's avatar
comfyanonymous committed
258
259
260
261
            if emb_out is not None:
                if self.exchange_temb_dims:
                    emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
                h = h + emb_out
comfyanonymous's avatar
comfyanonymous committed
262
263
264
            h = self.out_layers(h)
        return self.skip_connection(x) + h

comfyanonymous's avatar
comfyanonymous committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

class VideoResBlock(ResBlock):
    def __init__(
        self,
        channels: int,
        emb_channels: int,
        dropout: float,
        video_kernel_size=3,
        merge_strategy: str = "fixed",
        merge_factor: float = 0.5,
        out_channels=None,
        use_conv: bool = False,
        use_scale_shift_norm: bool = False,
        dims: int = 2,
        use_checkpoint: bool = False,
        up: bool = False,
        down: bool = False,
        dtype=None,
        device=None,
comfyanonymous's avatar
comfyanonymous committed
284
        operations=ops
comfyanonymous's avatar
comfyanonymous committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    ):
        super().__init__(
            channels,
            emb_channels,
            dropout,
            out_channels=out_channels,
            use_conv=use_conv,
            use_scale_shift_norm=use_scale_shift_norm,
            dims=dims,
            use_checkpoint=use_checkpoint,
            up=up,
            down=down,
            dtype=dtype,
            device=device,
            operations=operations
        )

        self.time_stack = ResBlock(
            default(out_channels, channels),
            emb_channels,
            dropout=dropout,
            dims=3,
            out_channels=default(out_channels, channels),
            use_scale_shift_norm=False,
            use_conv=False,
            up=False,
            down=False,
            kernel_size=video_kernel_size,
            use_checkpoint=use_checkpoint,
            exchange_temb_dims=True,
            dtype=dtype,
            device=device,
            operations=operations
        )
        self.time_mixer = AlphaBlender(
            alpha=merge_factor,
            merge_strategy=merge_strategy,
            rearrange_pattern="b t -> b 1 t 1 1",
        )

    def forward(
        self,
        x: th.Tensor,
        emb: th.Tensor,
        num_video_frames: int,
        image_only_indicator = None,
    ) -> th.Tensor:
        x = super().forward(x, emb)

        x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
        x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)

        x = self.time_stack(
            x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames)
        )
        x = self.time_mixer(
            x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator
        )
        x = rearrange(x, "b c t h w -> (b t) c h w")
        return x


347
348
349
350
351
352
353
354
class Timestep(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, t):
        return timestep_embedding(t, self.dim)

comfyanonymous's avatar
comfyanonymous committed
355
356
357
358
def apply_control(h, control, name):
    if control is not None and name in control and len(control[name]) > 0:
        ctrl = control[name].pop()
        if ctrl is not None:
359
360
361
362
            try:
                h += ctrl
            except:
                print("warning control could not be applied", h.shape, ctrl.shape)
comfyanonymous's avatar
comfyanonymous committed
363
    return h
364

comfyanonymous's avatar
comfyanonymous committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
class UNetModel(nn.Module):
    """
    The full UNet model with attention and timestep embedding.
    :param in_channels: channels in the input Tensor.
    :param model_channels: base channel count for the model.
    :param out_channels: channels in the output Tensor.
    :param num_res_blocks: number of residual blocks per downsample.
    :param dropout: the dropout probability.
    :param channel_mult: channel multiplier for each level of the UNet.
    :param conv_resample: if True, use learned convolutions for upsampling and
        downsampling.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param num_classes: if specified (as an int), then this model will be
        class-conditional with `num_classes` classes.
    :param use_checkpoint: use gradient checkpointing to reduce memory usage.
    :param num_heads: the number of attention heads in each attention layer.
    :param num_heads_channels: if specified, ignore num_heads and instead use
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
    :param resblock_updown: use residual blocks for up/downsampling.
    :param use_new_attention_order: use a different attention pattern for potentially
                                    increased efficiency.
    """

    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        num_classes=None,
        use_checkpoint=False,
404
        dtype=th.float32,
comfyanonymous's avatar
comfyanonymous committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
        num_heads=-1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
        use_spatial_transformer=False,    # custom transformer support
        transformer_depth=1,              # custom transformer support
        context_dim=None,                 # custom transformer support
        n_embed=None,                     # custom support for prediction of discrete ids into codebook of first stage vq model
        legacy=True,
        disable_self_attentions=None,
        num_attention_blocks=None,
        disable_middle_self_attn=False,
        use_linear_in_transformer=False,
420
        adm_in_channels=None,
421
        transformer_depth_middle=None,
422
        transformer_depth_output=None,
comfyanonymous's avatar
comfyanonymous committed
423
424
425
426
427
428
429
430
431
432
        use_temporal_resblock=False,
        use_temporal_attention=False,
        time_context_dim=None,
        extra_ff_mix_layer=False,
        use_spatial_context=False,
        merge_strategy=None,
        merge_factor=0.0,
        video_kernel_size=None,
        disable_temporal_crossattention=False,
        max_ddpm_temb_period=10000,
433
        device=None,
comfyanonymous's avatar
comfyanonymous committed
434
        operations=ops,
comfyanonymous's avatar
comfyanonymous committed
435
436
437
438
439
    ):
        super().__init__()

        if context_dim is not None:
            assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
440
441
442
            # from omegaconf.listconfig import ListConfig
            # if type(context_dim) == ListConfig:
            #     context_dim = list(context_dim)
comfyanonymous's avatar
comfyanonymous committed
443
444
445
446
447
448
449
450
451
452
453
454
455

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'

        if num_head_channels == -1:
            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'

        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
456

comfyanonymous's avatar
comfyanonymous committed
457
458
459
460
461
462
463
        if isinstance(num_res_blocks, int):
            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
        else:
            if len(num_res_blocks) != len(channel_mult):
                raise ValueError("provide num_res_blocks either as an int (globally constant) or "
                                 "as a list/tuple (per-level) with the same length as channel_mult")
            self.num_res_blocks = num_res_blocks
464

comfyanonymous's avatar
comfyanonymous committed
465
466
467
468
469
470
        if disable_self_attentions is not None:
            # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
            assert len(disable_self_attentions) == len(channel_mult)
        if num_attention_blocks is not None:
            assert len(num_attention_blocks) == len(self.num_res_blocks)

471
472
473
        transformer_depth = transformer_depth[:]
        transformer_depth_output = transformer_depth_output[:]

comfyanonymous's avatar
comfyanonymous committed
474
475
476
477
478
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
479
        self.dtype = dtype
comfyanonymous's avatar
comfyanonymous committed
480
481
482
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
comfyanonymous's avatar
comfyanonymous committed
483
        self.use_temporal_resblocks = use_temporal_resblock
comfyanonymous's avatar
comfyanonymous committed
484
485
        self.predict_codebook_ids = n_embed is not None

comfyanonymous's avatar
comfyanonymous committed
486
487
488
        self.default_num_video_frames = None
        self.default_image_only_indicator = None

comfyanonymous's avatar
comfyanonymous committed
489
490
        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
491
            operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
492
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
493
            operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
494
495
496
497
        )

        if self.num_classes is not None:
            if isinstance(self.num_classes, int):
498
                self.label_emb = nn.Embedding(num_classes, time_embed_dim, dtype=self.dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
499
500
501
            elif self.num_classes == "continuous":
                print("setting up linear c_adm embedding layer")
                self.label_emb = nn.Linear(1, time_embed_dim)
502
503
504
505
            elif self.num_classes == "sequential":
                assert adm_in_channels is not None
                self.label_emb = nn.Sequential(
                    nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
506
                        operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
507
                        nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
508
                        operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
509
510
                    )
                )
comfyanonymous's avatar
comfyanonymous committed
511
512
513
514
515
516
            else:
                raise ValueError()

        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
comfyanonymous's avatar
comfyanonymous committed
517
                    operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
518
519
520
521
522
523
524
                )
            ]
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
comfyanonymous's avatar
comfyanonymous committed
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

        def get_attention_layer(
            ch,
            num_heads,
            dim_head,
            depth=1,
            context_dim=None,
            use_checkpoint=False,
            disable_self_attn=False,
        ):
            if use_temporal_attention:
                return SpatialVideoTransformer(
                    ch,
                    num_heads,
                    dim_head,
                    depth=depth,
                    context_dim=context_dim,
                    time_context_dim=time_context_dim,
                    dropout=dropout,
                    ff_in=extra_ff_mix_layer,
                    use_spatial_context=use_spatial_context,
                    merge_strategy=merge_strategy,
                    merge_factor=merge_factor,
                    checkpoint=use_checkpoint,
                    use_linear=use_linear_in_transformer,
                    disable_self_attn=disable_self_attn,
                    disable_temporal_crossattention=disable_temporal_crossattention,
                    max_time_embed_period=max_ddpm_temb_period,
                    dtype=self.dtype, device=device, operations=operations
                )
            else:
                return SpatialTransformer(
                                ch, num_heads, dim_head, depth=depth, context_dim=context_dim,
                                disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer,
                                use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
                            )

        def get_resblock(
            merge_factor,
            merge_strategy,
            video_kernel_size,
            ch,
            time_embed_dim,
            dropout,
            out_channels,
            dims,
            use_checkpoint,
            use_scale_shift_norm,
            down=False,
            up=False,
            dtype=None,
            device=None,
comfyanonymous's avatar
comfyanonymous committed
577
            operations=ops
comfyanonymous's avatar
comfyanonymous committed
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
        ):
            if self.use_temporal_resblocks:
                return VideoResBlock(
                    merge_factor=merge_factor,
                    merge_strategy=merge_strategy,
                    video_kernel_size=video_kernel_size,
                    channels=ch,
                    emb_channels=time_embed_dim,
                    dropout=dropout,
                    out_channels=out_channels,
                    dims=dims,
                    use_checkpoint=use_checkpoint,
                    use_scale_shift_norm=use_scale_shift_norm,
                    down=down,
                    up=up,
                    dtype=dtype,
                    device=device,
                    operations=operations
                )
            else:
                return ResBlock(
                    channels=ch,
                    emb_channels=time_embed_dim,
                    dropout=dropout,
                    out_channels=out_channels,
                    use_checkpoint=use_checkpoint,
                    dims=dims,
                    use_scale_shift_norm=use_scale_shift_norm,
                    down=down,
                    up=up,
                    dtype=dtype,
                    device=device,
                    operations=operations
                )

comfyanonymous's avatar
comfyanonymous committed
613
614
615
        for level, mult in enumerate(channel_mult):
            for nr in range(self.num_res_blocks[level]):
                layers = [
comfyanonymous's avatar
comfyanonymous committed
616
617
618
619
620
621
622
                    get_resblock(
                        merge_factor=merge_factor,
                        merge_strategy=merge_strategy,
                        video_kernel_size=video_kernel_size,
                        ch=ch,
                        time_embed_dim=time_embed_dim,
                        dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
623
624
625
626
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
627
628
                        dtype=self.dtype,
                        device=device,
comfyanonymous's avatar
comfyanonymous committed
629
                        operations=operations,
comfyanonymous's avatar
comfyanonymous committed
630
631
632
                    )
                ]
                ch = mult * model_channels
633
634
                num_transformers = transformer_depth.pop(0)
                if num_transformers > 0:
comfyanonymous's avatar
comfyanonymous committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        #num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
comfyanonymous's avatar
comfyanonymous committed
649
                        layers.append(get_attention_layer(
650
                                ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
651
                                disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint)
comfyanonymous's avatar
comfyanonymous committed
652
653
654
655
656
657
658
659
                        )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
comfyanonymous's avatar
comfyanonymous committed
660
661
662
663
664
665
666
                        get_resblock(
                            merge_factor=merge_factor,
                            merge_strategy=merge_strategy,
                            video_kernel_size=video_kernel_size,
                            ch=ch,
                            time_embed_dim=time_embed_dim,
                            dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
667
668
669
670
671
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
672
673
                            dtype=self.dtype,
                            device=device,
comfyanonymous's avatar
comfyanonymous committed
674
                            operations=operations
comfyanonymous's avatar
comfyanonymous committed
675
676
677
                        )
                        if resblock_updown
                        else Downsample(
comfyanonymous's avatar
comfyanonymous committed
678
                            ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
                        )
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
            #num_heads = 1
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
695
        mid_block = [
comfyanonymous's avatar
comfyanonymous committed
696
697
698
699
700
701
702
703
            get_resblock(
                merge_factor=merge_factor,
                merge_strategy=merge_strategy,
                video_kernel_size=video_kernel_size,
                ch=ch,
                time_embed_dim=time_embed_dim,
                dropout=dropout,
                out_channels=None,
comfyanonymous's avatar
comfyanonymous committed
704
705
706
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
707
708
                dtype=self.dtype,
                device=device,
comfyanonymous's avatar
comfyanonymous committed
709
                operations=operations
710
            )]
comfyanonymous's avatar
comfyanonymous committed
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734

        self.middle_block = None
        if transformer_depth_middle >= -1:
            if transformer_depth_middle >= 0:
                mid_block += [get_attention_layer(  # always uses a self-attn
                                ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
                                disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint
                            ),
                get_resblock(
                    merge_factor=merge_factor,
                    merge_strategy=merge_strategy,
                    video_kernel_size=video_kernel_size,
                    ch=ch,
                    time_embed_dim=time_embed_dim,
                    dropout=dropout,
                    out_channels=None,
                    dims=dims,
                    use_checkpoint=use_checkpoint,
                    use_scale_shift_norm=use_scale_shift_norm,
                    dtype=self.dtype,
                    device=device,
                    operations=operations
                )]
            self.middle_block = TimestepEmbedSequential(*mid_block)
comfyanonymous's avatar
comfyanonymous committed
735
736
737
738
739
740
741
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(self.num_res_blocks[level] + 1):
                ich = input_block_chans.pop()
                layers = [
comfyanonymous's avatar
comfyanonymous committed
742
743
744
745
746
747
748
                    get_resblock(
                        merge_factor=merge_factor,
                        merge_strategy=merge_strategy,
                        video_kernel_size=video_kernel_size,
                        ch=ch + ich,
                        time_embed_dim=time_embed_dim,
                        dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
749
750
751
752
                        out_channels=model_channels * mult,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
753
754
                        dtype=self.dtype,
                        device=device,
comfyanonymous's avatar
comfyanonymous committed
755
                        operations=operations
comfyanonymous's avatar
comfyanonymous committed
756
757
758
                    )
                ]
                ch = model_channels * mult
759
760
                num_transformers = transformer_depth_output.pop()
                if num_transformers > 0:
comfyanonymous's avatar
comfyanonymous committed
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        #num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
                        layers.append(
comfyanonymous's avatar
comfyanonymous committed
776
                            get_attention_layer(
777
                                ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
778
                                disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint
comfyanonymous's avatar
comfyanonymous committed
779
780
781
782
783
                            )
                        )
                if level and i == self.num_res_blocks[level]:
                    out_ch = ch
                    layers.append(
comfyanonymous's avatar
comfyanonymous committed
784
785
786
787
788
789
790
                        get_resblock(
                            merge_factor=merge_factor,
                            merge_strategy=merge_strategy,
                            video_kernel_size=video_kernel_size,
                            ch=ch,
                            time_embed_dim=time_embed_dim,
                            dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
791
792
793
794
795
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            up=True,
796
797
                            dtype=self.dtype,
                            device=device,
comfyanonymous's avatar
comfyanonymous committed
798
                            operations=operations
comfyanonymous's avatar
comfyanonymous committed
799
800
                        )
                        if resblock_updown
comfyanonymous's avatar
comfyanonymous committed
801
                        else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
802
803
804
805
806
807
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
808
            operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
809
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
810
            zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
comfyanonymous's avatar
comfyanonymous committed
811
812
813
        )
        if self.predict_codebook_ids:
            self.id_predictor = nn.Sequential(
814
            operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
815
            operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
816
817
818
            #nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
        )

819
    def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
comfyanonymous's avatar
comfyanonymous committed
820
821
822
823
824
825
826
827
        """
        Apply the model to an input batch.
        :param x: an [N x C x ...] Tensor of inputs.
        :param timesteps: a 1-D batch of timesteps.
        :param context: conditioning plugged in via crossattn
        :param y: an [N] Tensor of labels, if class-conditional.
        :return: an [N x C x ...] Tensor of outputs.
        """
828
        transformer_options["original_shape"] = list(x.shape)
829
        transformer_options["transformer_index"] = 0
830
        transformer_patches = transformer_options.get("patches", {})
831

comfyanonymous's avatar
comfyanonymous committed
832
833
834
835
        num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames)
        image_only_indicator = kwargs.get("image_only_indicator", self.default_image_only_indicator)
        time_context = kwargs.get("time_context", None)

comfyanonymous's avatar
comfyanonymous committed
836
837
838
839
        assert (y is not None) == (
            self.num_classes is not None
        ), "must specify y if and only if the model is class-conditional"
        hs = []
840
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
comfyanonymous's avatar
comfyanonymous committed
841
842
843
844
845
846
        emb = self.time_embed(t_emb)

        if self.num_classes is not None:
            assert y.shape[0] == x.shape[0]
            emb = emb + self.label_emb(y)

847
        h = x
comfyanonymous's avatar
comfyanonymous committed
848
        for id, module in enumerate(self.input_blocks):
849
            transformer_options["block"] = ("input", id)
comfyanonymous's avatar
comfyanonymous committed
850
            h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
comfyanonymous's avatar
comfyanonymous committed
851
            h = apply_control(h, control, 'input')
852
853
854
855
856
            if "input_block_patch" in transformer_patches:
                patch = transformer_patches["input_block_patch"]
                for p in patch:
                    h = p(h, transformer_options)

comfyanonymous's avatar
comfyanonymous committed
857
            hs.append(h)
858
859
860
861
            if "input_block_patch_after_skip" in transformer_patches:
                patch = transformer_patches["input_block_patch_after_skip"]
                for p in patch:
                    h = p(h, transformer_options)
comfyanonymous's avatar
comfyanonymous committed
862

863
        transformer_options["block"] = ("middle", 0)
comfyanonymous's avatar
comfyanonymous committed
864
865
        if self.middle_block is not None:
            h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
comfyanonymous's avatar
comfyanonymous committed
866
        h = apply_control(h, control, 'middle')
comfyanonymous's avatar
comfyanonymous committed
867

comfyanonymous's avatar
comfyanonymous committed
868

869
870
        for id, module in enumerate(self.output_blocks):
            transformer_options["block"] = ("output", id)
comfyanonymous's avatar
comfyanonymous committed
871
            hsp = hs.pop()
comfyanonymous's avatar
comfyanonymous committed
872
            hsp = apply_control(hsp, control, 'output')
873

874
875
876
877
878
            if "output_block_patch" in transformer_patches:
                patch = transformer_patches["output_block_patch"]
                for p in patch:
                    h, hsp = p(h, hsp, transformer_options)

comfyanonymous's avatar
comfyanonymous committed
879
            h = th.cat([h, hsp], dim=1)
comfyanonymous's avatar
comfyanonymous committed
880
            del hsp
881
882
883
884
            if len(hs) > 0:
                output_shape = hs[-1].shape
            else:
                output_shape = None
comfyanonymous's avatar
comfyanonymous committed
885
            h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
comfyanonymous's avatar
comfyanonymous committed
886
887
888
889
890
        h = h.type(x.dtype)
        if self.predict_codebook_ids:
            return self.id_predictor(h)
        else:
            return self.out(h)