attention.py 26.8 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
8
from inspect import isfunction
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional, Any

comfyanonymous's avatar
comfyanonymous committed
9
from .diffusionmodules.util import checkpoint
comfyanonymous's avatar
comfyanonymous committed
10
11
from .sub_quadratic_attention import efficient_dot_product_attention

12
from comfy import model_management
13

14
if model_management.xformers_enabled():
comfyanonymous's avatar
comfyanonymous committed
15
16
17
    import xformers
    import xformers.ops

comfyanonymous's avatar
comfyanonymous committed
18
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
19
20
import comfy.ops

comfyanonymous's avatar
comfyanonymous committed
21
# CrossAttn precision handling
comfyanonymous's avatar
comfyanonymous committed
22
23
24
25
26
if args.dont_upcast_attention:
    print("disabling upcasting of attention")
    _ATTN_PRECISION = "fp16"
else:
    _ATTN_PRECISION = "fp32"
comfyanonymous's avatar
comfyanonymous committed
27

28

comfyanonymous's avatar
comfyanonymous committed
29
30
31
32
33
34
35
36
37
38
39
def exists(val):
    return val is not None


def uniq(arr):
    return{el: True for el in arr}.keys()


def default(val, d):
    if exists(val):
        return val
40
    return d
comfyanonymous's avatar
comfyanonymous committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
56
    def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
57
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
58
        self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
59
60
61
62
63
64
65

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
66
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
67
68
69
70
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
71
            operations.Linear(dim, inner_dim, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
72
            nn.GELU()
comfyanonymous's avatar
comfyanonymous committed
73
        ) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
74
75
76
77

        self.net = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
comfyanonymous's avatar
comfyanonymous committed
78
            operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        )

    def forward(self, x):
        return self.net(x)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


94
95
def Normalize(in_channels, dtype=None, device=None):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151


class SpatialSelfAttention(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.k = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.v = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.proj_out = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=1,
                                        stride=1,
                                        padding=0)

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b,c,h,w = q.shape
        q = rearrange(q, 'b c h w -> b (h w) c')
        k = rearrange(k, 'b c h w -> b c (h w)')
        w_ = torch.einsum('bij,bjk->bik', q, k)

        w_ = w_ * (int(c)**(-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)

        # attend to values
        v = rearrange(v, 'b c h w -> b c (h w)')
        w_ = rearrange(w_, 'b i j -> b j i')
        h_ = torch.einsum('bij,bjk->bik', v, w_)
        h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
        h_ = self.proj_out(h_)

        return x+h_


class CrossAttentionBirchSan(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
152
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
153
154
155
156
157
158
159
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head ** -0.5
        self.heads = heads

comfyanonymous's avatar
comfyanonymous committed
160
161
162
        self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
163
164

        self.to_out = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
165
            operations.Linear(inner_dim, query_dim, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
166
167
168
            nn.Dropout(dropout)
        )

169
    def forward(self, x, context=None, value=None, mask=None):
comfyanonymous's avatar
comfyanonymous committed
170
171
172
173
174
        h = self.heads

        query = self.to_q(x)
        context = default(context, x)
        key = self.to_k(context)
175
176
177
178
179
        if value is not None:
            value = self.to_v(value)
        else:
            value = self.to_v(context)

comfyanonymous's avatar
comfyanonymous committed
180
181
182
183
184
185
186
187
        del context, x

        query = query.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1)
        key_t = key.transpose(1,2).unflatten(1, (self.heads, -1)).flatten(end_dim=1)
        del key
        value = value.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1)

        dtype = query.dtype
188
189
190
191
192
        upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
        if upcast_attention:
            bytes_per_token = torch.finfo(torch.float32).bits//8
        else:
            bytes_per_token = torch.finfo(query.dtype).bits//8
comfyanonymous's avatar
comfyanonymous committed
193
194
195
196
        batch_x_heads, q_tokens, _ = query.shape
        _, _, k_tokens = key_t.shape
        qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens

197
198
        mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)

comfyanonymous's avatar
comfyanonymous committed
199
200
201
202
        chunk_threshold_bytes = mem_free_torch * 0.5 #Using only this seems to work better on AMD

        kv_chunk_size_min = None

203
204
205
206
207
208
209
210
        #not sure at all about the math here
        #TODO: tweak this
        if mem_free_total > 8192 * 1024 * 1024 * 1.3:
            query_chunk_size_x = 1024 * 4
        elif mem_free_total > 4096 * 1024 * 1024 * 1.3:
            query_chunk_size_x = 1024 * 2
        else:
            query_chunk_size_x = 1024
comfyanonymous's avatar
comfyanonymous committed
211
        kv_chunk_size_min_x = None
212
        kv_chunk_size_x = (int((chunk_threshold_bytes // (batch_x_heads * bytes_per_token * query_chunk_size_x)) * 2.0) // 1024) * 1024
comfyanonymous's avatar
comfyanonymous committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        if kv_chunk_size_x < 1024:
            kv_chunk_size_x = None

        if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
            # the big matmul fits into our memory limit; do everything in 1 chunk,
            # i.e. send it down the unchunked fast-path
            query_chunk_size = q_tokens
            kv_chunk_size = k_tokens
        else:
            query_chunk_size = query_chunk_size_x
            kv_chunk_size = kv_chunk_size_x
            kv_chunk_size_min = kv_chunk_size_min_x

        hidden_states = efficient_dot_product_attention(
            query,
            key_t,
            value,
            query_chunk_size=query_chunk_size,
            kv_chunk_size=kv_chunk_size,
            kv_chunk_size_min=kv_chunk_size_min,
            use_checkpoint=self.training,
234
            upcast_attention=upcast_attention,
comfyanonymous's avatar
comfyanonymous committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        )

        hidden_states = hidden_states.to(dtype)

        hidden_states = hidden_states.unflatten(0, (-1, self.heads)).transpose(1,2).flatten(start_dim=2)

        out_proj, dropout = self.to_out
        hidden_states = out_proj(hidden_states)
        hidden_states = dropout(hidden_states)

        return hidden_states


class CrossAttentionDoggettx(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
249
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
250
251
252
253
254
255
256
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head ** -0.5
        self.heads = heads

comfyanonymous's avatar
comfyanonymous committed
257
258
259
        self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
260
261

        self.to_out = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
262
            operations.Linear(inner_dim, query_dim, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
263
264
265
            nn.Dropout(dropout)
        )

266
    def forward(self, x, context=None, value=None, mask=None):
comfyanonymous's avatar
comfyanonymous committed
267
268
269
270
271
        h = self.heads

        q_in = self.to_q(x)
        context = default(context, x)
        k_in = self.to_k(context)
272
273
274
275
276
        if value is not None:
            v_in = self.to_v(value)
            del value
        else:
            v_in = self.to_v(context)
comfyanonymous's avatar
comfyanonymous committed
277
278
279
280
281
        del context, x

        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
        del q_in, k_in, v_in

282
        r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
comfyanonymous's avatar
comfyanonymous committed
283

284
        mem_free_total = model_management.get_free_memory(q.device)
comfyanonymous's avatar
comfyanonymous committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

        gb = 1024 ** 3
        tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
        modifier = 3 if q.element_size() == 2 else 2.5
        mem_required = tensor_size * modifier
        steps = 1


        if mem_required > mem_free_total:
            steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
            # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
            #      f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")

        if steps > 64:
            max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
            raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
                               f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')

        # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
        first_op_done = False
        cleared_cache = False
        while True:
            try:
                slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
                for i in range(0, q.shape[1], slice_size):
                    end = i + slice_size
                    if _ATTN_PRECISION =="fp32":
                        with torch.autocast(enabled=False, device_type = 'cuda'):
                            s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * self.scale
                    else:
                        s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * self.scale
                    first_op_done = True

318
                    s2 = s1.softmax(dim=-1).to(v.dtype)
comfyanonymous's avatar
comfyanonymous committed
319
320
321
322
323
                    del s1

                    r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
                    del s2
                break
324
            except model_management.OOM_EXCEPTION as e:
comfyanonymous's avatar
comfyanonymous committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
                if first_op_done == False:
                    torch.cuda.empty_cache()
                    torch.cuda.ipc_collect()
                    if cleared_cache == False:
                        cleared_cache = True
                        print("out of memory error, emptying cache and trying again")
                        continue
                    steps *= 2
                    if steps > 64:
                        raise e
                    print("out of memory error, increasing steps and trying again", steps)
                else:
                    raise e

        del q, k, v

        r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
        del r1

        return self.to_out(r2)

346
class CrossAttention(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
347
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
348
349
350
351
352
353
354
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head ** -0.5
        self.heads = heads

comfyanonymous's avatar
comfyanonymous committed
355
356
357
        self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
358
359

        self.to_out = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
360
            operations.Linear(inner_dim, query_dim, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
361
362
363
            nn.Dropout(dropout)
        )

364
    def forward(self, x, context=None, value=None, mask=None):
comfyanonymous's avatar
comfyanonymous committed
365
366
367
368
369
        h = self.heads

        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
370
371
372
373
374
        if value is not None:
            v = self.to_v(value)
            del value
        else:
            v = self.to_v(context)
comfyanonymous's avatar
comfyanonymous committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))

        # force cast to fp32 to avoid overflowing
        if _ATTN_PRECISION =="fp32":
            with torch.autocast(enabled=False, device_type = 'cuda'):
                q, k = q.float(), k.float()
                sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
        else:
            sim = einsum('b i d, b j d -> b i j', q, k) * self.scale

        del q, k

        if exists(mask):
            mask = rearrange(mask, 'b ... -> b (...)')
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = repeat(mask, 'b j -> (b h) () j', h=h)
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        sim = sim.softmax(dim=-1)

        out = einsum('b i j, b j d -> b i d', sim, v)
        out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
        return self.to_out(out)

class MemoryEfficientCrossAttention(nn.Module):
    # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
comfyanonymous's avatar
comfyanonymous committed
403
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
404
405
406
407
408
409
410
411
412
        super().__init__()
        print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
              f"{heads} heads.")
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.heads = heads
        self.dim_head = dim_head

comfyanonymous's avatar
comfyanonymous committed
413
414
415
        self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
416

comfyanonymous's avatar
comfyanonymous committed
417
        self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
comfyanonymous's avatar
comfyanonymous committed
418
419
        self.attention_op: Optional[Any] = None

420
    def forward(self, x, context=None, value=None, mask=None):
comfyanonymous's avatar
comfyanonymous committed
421
422
423
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
424
425
426
427
428
        if value is not None:
            v = self.to_v(value)
            del value
        else:
            v = self.to_v(context)
comfyanonymous's avatar
comfyanonymous committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

        b, _, _ = q.shape
        q, k, v = map(
            lambda t: t.unsqueeze(3)
            .reshape(b, t.shape[1], self.heads, self.dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b * self.heads, t.shape[1], self.dim_head)
            .contiguous(),
            (q, k, v),
        )

        # actually compute the attention, what we cannot get enough of
        out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)

        if exists(mask):
            raise NotImplementedError
        out = (
            out.unsqueeze(0)
            .reshape(b, self.heads, out.shape[1], self.dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b, out.shape[1], self.heads * self.dim_head)
        )
        return self.to_out(out)

453
class CrossAttentionPytorch(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
454
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
455
456
457
458
459
460
461
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.heads = heads
        self.dim_head = dim_head

comfyanonymous's avatar
comfyanonymous committed
462
463
464
        self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
465

comfyanonymous's avatar
comfyanonymous committed
466
        self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
467
468
        self.attention_op: Optional[Any] = None

469
    def forward(self, x, context=None, value=None, mask=None):
470
471
472
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
473
474
475
476
477
        if value is not None:
            v = self.to_v(value)
            del value
        else:
            v = self.to_v(context)
478
479
480

        b, _, _ = q.shape
        q, k, v = map(
481
            lambda t: t.view(b, -1, self.heads, self.dim_head).transpose(1, 2),
482
483
484
485
486
487
488
489
            (q, k, v),
        )

        out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)

        if exists(mask):
            raise NotImplementedError
        out = (
490
            out.transpose(1, 2).reshape(b, -1, self.heads * self.dim_head)
491
492
493
494
        )

        return self.to_out(out)

495
496
497
498
499
500
501
if model_management.xformers_enabled():
    print("Using xformers cross attention")
    CrossAttention = MemoryEfficientCrossAttention
elif model_management.pytorch_attention_enabled():
    print("Using pytorch cross attention")
    CrossAttention = CrossAttentionPytorch
else:
502
    if args.use_split_cross_attention:
503
504
505
        print("Using split optimization for cross attention")
        CrossAttention = CrossAttentionDoggettx
    else:
506
507
        print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
        CrossAttention = CrossAttentionBirchSan
comfyanonymous's avatar
comfyanonymous committed
508

509

comfyanonymous's avatar
comfyanonymous committed
510
511
class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
comfyanonymous's avatar
comfyanonymous committed
512
                 disable_self_attn=False, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
513
514
        super().__init__()
        self.disable_self_attn = disable_self_attn
515
        self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
516
517
                              context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations)  # is a self-attention if not self.disable_self_attn
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
518
        self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
519
                              heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations)  # is self-attn if context is none
520
521
522
        self.norm1 = nn.LayerNorm(dim, dtype=dtype, device=device)
        self.norm2 = nn.LayerNorm(dim, dtype=dtype, device=device)
        self.norm3 = nn.LayerNorm(dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
523
        self.checkpoint = checkpoint
524
525
        self.n_heads = n_heads
        self.d_head = d_head
comfyanonymous's avatar
comfyanonymous committed
526

527
528
    def forward(self, x, context=None, transformer_options={}):
        return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
comfyanonymous's avatar
comfyanonymous committed
529

530
    def _forward(self, x, context=None, transformer_options={}):
531
        extra_options = {}
532
533
        block = None
        block_index = 0
534
        if "current_index" in transformer_options:
535
536
            extra_options["transformer_index"] = transformer_options["current_index"]
        if "block_index" in transformer_options:
537
538
            block_index = transformer_options["block_index"]
            extra_options["block_index"] = block_index
539
540
        if "original_shape" in transformer_options:
            extra_options["original_shape"] = transformer_options["original_shape"]
541
542
543
        if "block" in transformer_options:
            block = transformer_options["block"]
            extra_options["block"] = block
544
545
546
547
548
        if "patches" in transformer_options:
            transformer_patches = transformer_options["patches"]
        else:
            transformer_patches = {}

549
550
551
552
553
554
555
556
        extra_options["n_heads"] = self.n_heads
        extra_options["dim_head"] = self.d_head

        if "patches_replace" in transformer_options:
            transformer_patches_replace = transformer_options["patches_replace"]
        else:
            transformer_patches_replace = {}

557
        n = self.norm1(x)
558
559
560
561
562
563
564
565
566
567
568
569
        if self.disable_self_attn:
            context_attn1 = context
        else:
            context_attn1 = None
        value_attn1 = None

        if "attn1_patch" in transformer_patches:
            patch = transformer_patches["attn1_patch"]
            if context_attn1 is None:
                context_attn1 = n
            value_attn1 = context_attn1
            for p in patch:
570
                n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
571

comfyanonymous's avatar
comfyanonymous committed
572
573
574
575
        if block is not None:
            transformer_block = (block[0], block[1], block_index)
        else:
            transformer_block = None
576
577
578
579
580
581
582
583
584
585
586
587
588
589
        attn1_replace_patch = transformer_patches_replace.get("attn1", {})
        block_attn1 = transformer_block
        if block_attn1 not in attn1_replace_patch:
            block_attn1 = block

        if block_attn1 in attn1_replace_patch:
            if context_attn1 is None:
                context_attn1 = n
                value_attn1 = n
            n = self.attn1.to_q(n)
            context_attn1 = self.attn1.to_k(context_attn1)
            value_attn1 = self.attn1.to_v(value_attn1)
            n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
            n = self.attn1.to_out(n)
590
        else:
591
            n = self.attn1(n, context=context_attn1, value=value_attn1)
592

593
594
595
596
597
        if "attn1_output_patch" in transformer_patches:
            patch = transformer_patches["attn1_output_patch"]
            for p in patch:
                n = p(n, extra_options)

598
        x += n
599
600
601
        if "middle_patch" in transformer_patches:
            patch = transformer_patches["middle_patch"]
            for p in patch:
602
                x = p(x, extra_options)
603

604
        n = self.norm2(x)
605
606
607
608
609
610
611

        context_attn2 = context
        value_attn2 = None
        if "attn2_patch" in transformer_patches:
            patch = transformer_patches["attn2_patch"]
            value_attn2 = context_attn2
            for p in patch:
612
                n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
613

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
        attn2_replace_patch = transformer_patches_replace.get("attn2", {})
        block_attn2 = transformer_block
        if block_attn2 not in attn2_replace_patch:
            block_attn2 = block

        if block_attn2 in attn2_replace_patch:
            if value_attn2 is None:
                value_attn2 = context_attn2
            n = self.attn2.to_q(n)
            context_attn2 = self.attn2.to_k(context_attn2)
            value_attn2 = self.attn2.to_v(value_attn2)
            n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
            n = self.attn2.to_out(n)
        else:
            n = self.attn2(n, context=context_attn2, value=value_attn2)
629

630
631
632
633
634
        if "attn2_output_patch" in transformer_patches:
            patch = transformer_patches["attn2_output_patch"]
            for p in patch:
                n = p(n, extra_options)

635
        x += n
comfyanonymous's avatar
comfyanonymous committed
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
        x = self.ff(self.norm3(x)) + x
        return x


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    NEW: use_linear for more efficiency instead of the 1x1 convs
    """
    def __init__(self, in_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None,
                 disable_self_attn=False, use_linear=False,
comfyanonymous's avatar
comfyanonymous committed
652
                 use_checkpoint=True, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
653
654
        super().__init__()
        if exists(context_dim) and not isinstance(context_dim, list):
655
            context_dim = [context_dim] * depth
comfyanonymous's avatar
comfyanonymous committed
656
657
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
658
        self.norm = Normalize(in_channels, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
659
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
660
            self.proj_in = operations.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
661
662
663
                                     inner_dim,
                                     kernel_size=1,
                                     stride=1,
664
                                     padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
665
        else:
comfyanonymous's avatar
comfyanonymous committed
666
            self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
667
668
669

        self.transformer_blocks = nn.ModuleList(
            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
comfyanonymous's avatar
comfyanonymous committed
670
                                   disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
671
672
673
                for d in range(depth)]
        )
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
674
            self.proj_out = operations.Conv2d(inner_dim,in_channels,
comfyanonymous's avatar
comfyanonymous committed
675
676
                                                  kernel_size=1,
                                                  stride=1,
677
                                                  padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
678
        else:
comfyanonymous's avatar
comfyanonymous committed
679
            self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
680
681
        self.use_linear = use_linear

682
    def forward(self, x, context=None, transformer_options={}):
comfyanonymous's avatar
comfyanonymous committed
683
684
        # note: if no context is given, cross-attention defaults to self-attention
        if not isinstance(context, list):
685
            context = [context] * len(self.transformer_blocks)
comfyanonymous's avatar
comfyanonymous committed
686
687
688
689
690
691
692
693
694
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
        if self.use_linear:
            x = self.proj_in(x)
        for i, block in enumerate(self.transformer_blocks):
695
            transformer_options["block_index"] = i
696
            x = block(x, context=context[i], transformer_options=transformer_options)
comfyanonymous's avatar
comfyanonymous committed
697
698
699
700
701
702
703
        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
        if not self.use_linear:
            x = self.proj_out(x)
        return x + x_in