utils.py 18.9 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
comfyanonymous's avatar
comfyanonymous committed
2
import math
3
import struct
4
import comfy.checkpoint_pickle
5
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
6
import numpy as np
7
from PIL import Image
comfyanonymous's avatar
comfyanonymous committed
8

comfyanonymous's avatar
comfyanonymous committed
9
10
11
def load_torch_file(ckpt, safe_load=False, device=None):
    if device is None:
        device = torch.device("cpu")
12
    if ckpt.lower().endswith(".safetensors"):
comfyanonymous's avatar
comfyanonymous committed
13
        sd = safetensors.torch.load_file(ckpt, device=device.type)
14
    else:
15
16
17
18
        if safe_load:
            if not 'weights_only' in torch.load.__code__.co_varnames:
                print("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.")
                safe_load = False
19
        if safe_load:
comfyanonymous's avatar
comfyanonymous committed
20
            pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
21
        else:
comfyanonymous's avatar
comfyanonymous committed
22
            pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
23
24
25
26
27
28
29
30
        if "global_step" in pl_sd:
            print(f"Global Step: {pl_sd['global_step']}")
        if "state_dict" in pl_sd:
            sd = pl_sd["state_dict"]
        else:
            sd = pl_sd
    return sd

31
32
33
34
35
36
def save_torch_file(sd, ckpt, metadata=None):
    if metadata is not None:
        safetensors.torch.save_file(sd, ckpt, metadata=metadata)
    else:
        safetensors.torch.save_file(sd, ckpt)

37
38
39
40
41
42
43
def calculate_parameters(sd, prefix=""):
    params = 0
    for k in sd.keys():
        if k.startswith(prefix):
            params += sd[k].nelement()
    return params

44
45
46
47
48
49
def state_dict_key_replace(state_dict, keys_to_replace):
    for x in keys_to_replace:
        if x in state_dict:
            state_dict[keys_to_replace[x]] = state_dict.pop(x)
    return state_dict

comfyanonymous's avatar
comfyanonymous committed
50
51
52
53
54
def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False):
    if filter_keys:
        out = {}
    else:
        out = state_dict
55
56
57
    for rp in replace_prefix:
        replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys())))
        for x in replace:
comfyanonymous's avatar
comfyanonymous committed
58
59
60
            w = state_dict.pop(x[0])
            out[x[1]] = w
    return out
61
62


63
def transformers_convert(sd, prefix_from, prefix_to, number):
comfyanonymous's avatar
comfyanonymous committed
64
    keys_to_replace = {
65
66
67
68
        "{}positional_embedding": "{}embeddings.position_embedding.weight",
        "{}token_embedding.weight": "{}embeddings.token_embedding.weight",
        "{}ln_final.weight": "{}final_layer_norm.weight",
        "{}ln_final.bias": "{}final_layer_norm.bias",
comfyanonymous's avatar
comfyanonymous committed
69
70
71
72
73
74
75
    }

    for k in keys_to_replace:
        x = k.format(prefix_from)
        if x in sd:
            sd[keys_to_replace[k].format(prefix_to)] = sd.pop(x)

76
77
78
79
80
81
82
83
84
85
86
    resblock_to_replace = {
        "ln_1": "layer_norm1",
        "ln_2": "layer_norm2",
        "mlp.c_fc": "mlp.fc1",
        "mlp.c_proj": "mlp.fc2",
        "attn.out_proj": "self_attn.out_proj",
    }

    for resblock in range(number):
        for x in resblock_to_replace:
            for y in ["weight", "bias"]:
87
88
                k = "{}transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
                k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
89
90
91
92
                if k in sd:
                    sd[k_to] = sd.pop(k)

        for y in ["weight", "bias"]:
93
            k_from = "{}transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
94
95
96
97
98
            if k_from in sd:
                weights = sd.pop(k_from)
                shape_from = weights.shape[0] // 3
                for x in range(3):
                    p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
99
                    k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
100
                    sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
101
102
103
104
105
106
107
108
109
110
111
112

    return sd

def clip_text_transformers_convert(sd, prefix_from, prefix_to):
    sd = transformers_convert(sd, prefix_from, "{}text_model.".format(prefix_to), 32)

    tp = "{}text_projection.weight".format(prefix_from)
    if tp in sd:
        sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp)

    tp = "{}text_projection".format(prefix_from)
    if tp in sd:
113
        sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp).transpose(0, 1).contiguous()
114
115
    return sd

116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
UNET_MAP_ATTENTIONS = {
    "proj_in.weight",
    "proj_in.bias",
    "proj_out.weight",
    "proj_out.bias",
    "norm.weight",
    "norm.bias",
}

TRANSFORMER_BLOCKS = {
    "norm1.weight",
    "norm1.bias",
    "norm2.weight",
    "norm2.bias",
    "norm3.weight",
    "norm3.bias",
    "attn1.to_q.weight",
    "attn1.to_k.weight",
    "attn1.to_v.weight",
    "attn1.to_out.0.weight",
    "attn1.to_out.0.bias",
    "attn2.to_q.weight",
    "attn2.to_k.weight",
    "attn2.to_v.weight",
    "attn2.to_out.0.weight",
    "attn2.to_out.0.bias",
    "ff.net.0.proj.weight",
    "ff.net.0.proj.bias",
    "ff.net.2.weight",
    "ff.net.2.bias",
}

UNET_MAP_RESNET = {
    "in_layers.2.weight": "conv1.weight",
    "in_layers.2.bias": "conv1.bias",
    "emb_layers.1.weight": "time_emb_proj.weight",
    "emb_layers.1.bias": "time_emb_proj.bias",
    "out_layers.3.weight": "conv2.weight",
    "out_layers.3.bias": "conv2.bias",
    "skip_connection.weight": "conv_shortcut.weight",
    "skip_connection.bias": "conv_shortcut.bias",
    "in_layers.0.weight": "norm1.weight",
    "in_layers.0.bias": "norm1.bias",
    "out_layers.0.weight": "norm2.weight",
    "out_layers.0.bias": "norm2.bias",
}

164
UNET_MAP_BASIC = {
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    ("label_emb.0.0.weight", "class_embedding.linear_1.weight"),
    ("label_emb.0.0.bias", "class_embedding.linear_1.bias"),
    ("label_emb.0.2.weight", "class_embedding.linear_2.weight"),
    ("label_emb.0.2.bias", "class_embedding.linear_2.bias"),
    ("label_emb.0.0.weight", "add_embedding.linear_1.weight"),
    ("label_emb.0.0.bias", "add_embedding.linear_1.bias"),
    ("label_emb.0.2.weight", "add_embedding.linear_2.weight"),
    ("label_emb.0.2.bias", "add_embedding.linear_2.bias"),
    ("input_blocks.0.0.weight", "conv_in.weight"),
    ("input_blocks.0.0.bias", "conv_in.bias"),
    ("out.0.weight", "conv_norm_out.weight"),
    ("out.0.bias", "conv_norm_out.bias"),
    ("out.2.weight", "conv_out.weight"),
    ("out.2.bias", "conv_out.bias"),
    ("time_embed.0.weight", "time_embedding.linear_1.weight"),
    ("time_embed.0.bias", "time_embedding.linear_1.bias"),
    ("time_embed.2.weight", "time_embedding.linear_2.weight"),
    ("time_embed.2.bias", "time_embedding.linear_2.bias")
183
184
}

185
def unet_to_diffusers(unet_config):
comfyanonymous's avatar
comfyanonymous committed
186
187
    if "num_res_blocks" not in unet_config:
        return {}
188
189
    num_res_blocks = unet_config["num_res_blocks"]
    channel_mult = unet_config["channel_mult"]
190
191
    transformer_depth = unet_config["transformer_depth"][:]
    transformer_depth_output = unet_config["transformer_depth_output"][:]
192
    num_blocks = len(channel_mult)
193
194

    transformers_mid = unet_config.get("transformer_depth_middle", None)
195
196
197
198
199
200
201

    diffusers_unet_map = {}
    for x in range(num_blocks):
        n = 1 + (num_res_blocks[x] + 1) * x
        for i in range(num_res_blocks[x]):
            for b in UNET_MAP_RESNET:
                diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
202
203
            num_transformers = transformer_depth.pop(0)
            if num_transformers > 0:
204
205
                for b in UNET_MAP_ATTENTIONS:
                    diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b)
206
                for t in range(num_transformers):
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
                    for b in TRANSFORMER_BLOCKS:
                        diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
            n += 1
        for k in ["weight", "bias"]:
            diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k)

    i = 0
    for b in UNET_MAP_ATTENTIONS:
        diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b)
    for t in range(transformers_mid):
        for b in TRANSFORMER_BLOCKS:
            diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b)

    for i, n in enumerate([0, 2]):
        for b in UNET_MAP_RESNET:
            diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)

    num_res_blocks = list(reversed(num_res_blocks))
    for x in range(num_blocks):
        n = (num_res_blocks[x] + 1) * x
        l = num_res_blocks[x] + 1
        for i in range(l):
            c = 0
            for b in UNET_MAP_RESNET:
                diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b)
            c += 1
233
234
            num_transformers = transformer_depth_output.pop()
            if num_transformers > 0:
235
236
237
                c += 1
                for b in UNET_MAP_ATTENTIONS:
                    diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b)
238
                for t in range(num_transformers):
239
240
241
242
243
244
                    for b in TRANSFORMER_BLOCKS:
                        diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
            if i == l - 1:
                for k in ["weight", "bias"]:
                    diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k)
            n += 1
245
246

    for k in UNET_MAP_BASIC:
247
        diffusers_unet_map[k[1]] = k[0]
248

249
250
    return diffusers_unet_map

251
252
253
254
255
256
257
def repeat_to_batch_size(tensor, batch_size):
    if tensor.shape[0] > batch_size:
        return tensor[:batch_size]
    elif tensor.shape[0] < batch_size:
        return tensor.repeat([math.ceil(batch_size / tensor.shape[0])] + [1] * (len(tensor.shape) - 1))[:batch_size]
    return tensor

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
def resize_to_batch_size(tensor, batch_size):
    in_batch_size = tensor.shape[0]
    if in_batch_size == batch_size:
        return tensor

    if batch_size <= 1:
        return tensor[:batch_size]

    output = torch.empty([batch_size] + list(tensor.shape)[1:], dtype=tensor.dtype, device=tensor.device)
    if batch_size < in_batch_size:
        scale = (in_batch_size - 1) / (batch_size - 1)
        for i in range(batch_size):
            output[i] = tensor[min(round(i * scale), in_batch_size - 1)]
    else:
        scale = in_batch_size / batch_size
        for i in range(batch_size):
            output[i] = tensor[min(math.floor((i + 0.5) * scale), in_batch_size - 1)]

    return output

278
279
280
281
282
283
def convert_sd_to(state_dict, dtype):
    keys = list(state_dict.keys())
    for k in keys:
        state_dict[k] = state_dict[k].to(dtype)
    return state_dict

284
285
286
287
288
289
290
291
def safetensors_header(safetensors_path, max_size=100*1024*1024):
    with open(safetensors_path, "rb") as f:
        header = f.read(8)
        length_of_header = struct.unpack('<Q', header)[0]
        if length_of_header > max_size:
            return None
        return f.read(length_of_header)

292
293
294
295
296
def set_attr(obj, attr, value):
    attrs = attr.split(".")
    for name in attrs[:-1]:
        obj = getattr(obj, name)
    prev = getattr(obj, attrs[-1])
comfyanonymous's avatar
comfyanonymous committed
297
    setattr(obj, attrs[-1], torch.nn.Parameter(value, requires_grad=False))
298
299
    del prev

300
301
302
303
304
305
306
307
def copy_to_param(obj, attr, value):
    # inplace update tensor instead of replacing it
    attrs = attr.split(".")
    for name in attrs[:-1]:
        obj = getattr(obj, name)
    prev = getattr(obj, attrs[-1])
    prev.data.copy_(value)

308
309
310
311
312
313
def get_attr(obj, attr):
    attrs = attr.split(".")
    for name in attrs:
        obj = getattr(obj, name)
    return obj

314
def bislerp(samples, width, height):
BlenderNeko's avatar
BlenderNeko committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
    def slerp(b1, b2, r):
        '''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC'''
        
        c = b1.shape[-1]

        #norms
        b1_norms = torch.norm(b1, dim=-1, keepdim=True)
        b2_norms = torch.norm(b2, dim=-1, keepdim=True)

        #normalize
        b1_normalized = b1 / b1_norms
        b2_normalized = b2 / b2_norms

        #zero when norms are zero
        b1_normalized[b1_norms.expand(-1,c) == 0.0] = 0.0
        b2_normalized[b2_norms.expand(-1,c) == 0.0] = 0.0

        #slerp
        dot = (b1_normalized*b2_normalized).sum(1)
        omega = torch.acos(dot)
335
        so = torch.sin(omega)
BlenderNeko's avatar
BlenderNeko committed
336
337
338
339
340
341
342
343
344
345

        #technically not mathematically correct, but more pleasing?
        res = (torch.sin((1.0-r.squeeze(1))*omega)/so).unsqueeze(1)*b1_normalized + (torch.sin(r.squeeze(1)*omega)/so).unsqueeze(1) * b2_normalized
        res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c)

        #edge cases for same or polar opposites
        res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5] 
        res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1]
        return res
    
comfyanonymous's avatar
comfyanonymous committed
346
347
    def generate_bilinear_data(length_old, length_new, device):
        coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1))
BlenderNeko's avatar
BlenderNeko committed
348
349
350
351
        coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear")
        ratios = coords_1 - coords_1.floor()
        coords_1 = coords_1.to(torch.int64)
        
comfyanonymous's avatar
comfyanonymous committed
352
        coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + 1
BlenderNeko's avatar
BlenderNeko committed
353
354
355
356
        coords_2[:,:,:,-1] -= 1
        coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear")
        coords_2 = coords_2.to(torch.int64)
        return ratios, coords_1, coords_2
357
358
359

    orig_dtype = samples.dtype
    samples = samples.float()
BlenderNeko's avatar
BlenderNeko committed
360
361
362
    n,c,h,w = samples.shape
    h_new, w_new = (height, width)
    
363
    #linear w
comfyanonymous's avatar
comfyanonymous committed
364
    ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device)
365
366
367
    coords_1 = coords_1.expand((n, c, h, -1))
    coords_2 = coords_2.expand((n, c, h, -1))
    ratios = ratios.expand((n, 1, h, -1))
BlenderNeko's avatar
BlenderNeko committed
368

comfyanonymous's avatar
comfyanonymous committed
369
370
371
    pass_1 = samples.gather(-1,coords_1).movedim(1, -1).reshape((-1,c))
    pass_2 = samples.gather(-1,coords_2).movedim(1, -1).reshape((-1,c))
    ratios = ratios.movedim(1, -1).reshape((-1,1))
BlenderNeko's avatar
BlenderNeko committed
372
373

    result = slerp(pass_1, pass_2, ratios)
comfyanonymous's avatar
comfyanonymous committed
374
    result = result.reshape(n, h, w_new, c).movedim(-1, 1)
BlenderNeko's avatar
BlenderNeko committed
375

376
    #linear h
comfyanonymous's avatar
comfyanonymous committed
377
    ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device)
378
379
380
    coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
    coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
    ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new))
BlenderNeko's avatar
BlenderNeko committed
381

comfyanonymous's avatar
comfyanonymous committed
382
383
384
    pass_1 = result.gather(-2,coords_1).movedim(1, -1).reshape((-1,c))
    pass_2 = result.gather(-2,coords_2).movedim(1, -1).reshape((-1,c))
    ratios = ratios.movedim(1, -1).reshape((-1,1))
BlenderNeko's avatar
BlenderNeko committed
385
386

    result = slerp(pass_1, pass_2, ratios)
comfyanonymous's avatar
comfyanonymous committed
387
    result = result.reshape(n, h_new, w_new, c).movedim(-1, 1)
388
    return result.to(orig_dtype)
389

390
def lanczos(samples, width, height):
comfyanonymous's avatar
comfyanonymous committed
391
    images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples]
392
    images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images]
comfyanonymous's avatar
comfyanonymous committed
393
    images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images]
394
    result = torch.stack(images)
395
    return result.to(samples.device, samples.dtype)
396

comfyanonymous's avatar
comfyanonymous committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
def common_upscale(samples, width, height, upscale_method, crop):
        if crop == "center":
            old_width = samples.shape[3]
            old_height = samples.shape[2]
            old_aspect = old_width / old_height
            new_aspect = width / height
            x = 0
            y = 0
            if old_aspect > new_aspect:
                x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
            elif old_aspect < new_aspect:
                y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
            s = samples[:,:,y:old_height-y,x:old_width-x]
        else:
            s = samples
412
413
414

        if upscale_method == "bislerp":
            return bislerp(s, width, height)
415
416
        elif upscale_method == "lanczos":
            return lanczos(s, width, height)
417
418
        else:
            return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
419

pythongosssss's avatar
pythongosssss committed
420
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
comfyanonymous's avatar
comfyanonymous committed
421
    return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
pythongosssss's avatar
pythongosssss committed
422

423
@torch.inference_mode()
424
425
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
    output = torch.empty((samples.shape[0], out_channels, round(samples.shape[2] * upscale_amount), round(samples.shape[3] * upscale_amount)), device=output_device)
426
427
    for b in range(samples.shape[0]):
        s = samples[b:b+1]
428
429
        out = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device=output_device)
        out_div = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device=output_device)
430
431
        for y in range(0, s.shape[2], tile_y - overlap):
            for x in range(0, s.shape[3], tile_x - overlap):
432
433
                x = max(0, min(s.shape[-1] - overlap, x))
                y = max(0, min(s.shape[-2] - overlap, y))
434
435
                s_in = s[:,:,y:y+tile_y,x:x+tile_x]

436
                ps = function(s_in).to(output_device)
437
                mask = torch.ones_like(ps)
438
                feather = round(overlap * upscale_amount)
439
440
441
442
443
                for t in range(feather):
                        mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
                        mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                        mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                        mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
444
445
                out[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += ps * mask
                out_div[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += mask
446
447
                if pbar is not None:
                    pbar.update(1)
448
449
450

        output[b:b+1] = out/out_div
    return output
451

452
453
454
455
PROGRESS_BAR_ENABLED = True
def set_progress_bar_enabled(enabled):
    global PROGRESS_BAR_ENABLED
    PROGRESS_BAR_ENABLED = enabled
456
457
458
459
460
461
462
463
464
465
466
467
468

PROGRESS_BAR_HOOK = None
def set_progress_bar_global_hook(function):
    global PROGRESS_BAR_HOOK
    PROGRESS_BAR_HOOK = function

class ProgressBar:
    def __init__(self, total):
        global PROGRESS_BAR_HOOK
        self.total = total
        self.current = 0
        self.hook = PROGRESS_BAR_HOOK

space-nuko's avatar
space-nuko committed
469
    def update_absolute(self, value, total=None, preview=None):
470
471
        if total is not None:
            self.total = total
472
473
474
475
        if value > self.total:
            value = self.total
        self.current = value
        if self.hook is not None:
space-nuko's avatar
space-nuko committed
476
            self.hook(self.current, self.total, preview)
477
478
479

    def update(self, value):
        self.update_absolute(self.current + value)