model_patcher.py 22.2 KB
Newer Older
1
2
3
import torch
import copy
import inspect
4
import logging
5
import uuid
6
7

import comfy.utils
8
import comfy.model_management
9
10
from comfy.types import UnetWrapperFunction

11

comfyanonymous's avatar
comfyanonymous committed
12
13
14
15
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength):
    dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32)
    lora_diff *= alpha
    weight_calc = weight + lora_diff.type(weight.dtype)
16
    weight_norm = (
comfyanonymous's avatar
comfyanonymous committed
17
18
        weight_calc.transpose(0, 1)
        .reshape(weight_calc.shape[1], -1)
19
        .norm(dim=1, keepdim=True)
comfyanonymous's avatar
comfyanonymous committed
20
        .reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
21
22
23
        .transpose(0, 1)
    )

comfyanonymous's avatar
comfyanonymous committed
24
25
26
27
28
29
30
31
    weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
    if strength != 1.0:
        weight_calc -= weight
        weight += strength * (weight_calc)
    else:
        weight[:] = weight_calc
    return weight

32

comfyanonymous's avatar
comfyanonymous committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None):
    to = model_options["transformer_options"].copy()

    if "patches_replace" not in to:
        to["patches_replace"] = {}
    else:
        to["patches_replace"] = to["patches_replace"].copy()

    if name not in to["patches_replace"]:
        to["patches_replace"][name] = {}
    else:
        to["patches_replace"][name] = to["patches_replace"][name].copy()

    if transformer_index is not None:
        block = (block_name, number, transformer_index)
    else:
        block = (block_name, number)
    to["patches_replace"][name][block] = patch
    model_options["transformer_options"] = to
    return model_options
53

54
class ModelPatcher:
55
    def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False):
56
57
58
59
        self.size = size
        self.model = model
        self.patches = {}
        self.backup = {}
60
61
        self.object_patches = {}
        self.object_patches_backup = {}
62
63
64
65
66
67
68
69
70
        self.model_options = {"transformer_options":{}}
        self.model_size()
        self.load_device = load_device
        self.offload_device = offload_device
        if current_device is None:
            self.current_device = self.offload_device
        else:
            self.current_device = current_device

71
        self.weight_inplace_update = weight_inplace_update
72
        self.model_lowvram = False
73
        self.lowvram_patch_counter = 0
74
        self.patches_uuid = uuid.uuid4()
75

76
77
78
79
    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
80
        self.size = comfy.model_management.module_size(self.model)
81
        self.model_keys = set(model_sd.keys())
82
        return self.size
83
84

    def clone(self):
comfyanonymous's avatar
comfyanonymous committed
85
        n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update)
86
87
88
        n.patches = {}
        for k in self.patches:
            n.patches[k] = self.patches[k][:]
89
        n.patches_uuid = self.patches_uuid
90

91
        n.object_patches = self.object_patches.copy()
92
93
        n.model_options = copy.deepcopy(self.model_options)
        n.model_keys = self.model_keys
94
95
        n.backup = self.backup
        n.object_patches_backup = self.object_patches_backup
96
97
98
99
100
101
102
        return n

    def is_clone(self, other):
        if hasattr(other, 'model') and self.model is other.model:
            return True
        return False

103
104
105
106
107
108
109
110
111
112
113
114
115
    def clone_has_same_weights(self, clone):
        if not self.is_clone(clone):
            return False

        if len(self.patches) == 0 and len(clone.patches) == 0:
            return True

        if self.patches_uuid == clone.patches_uuid:
            if len(self.patches) != len(clone.patches):
                logging.warning("WARNING: something went wrong, same patch uuid but different length of patches.")
            else:
                return True

116
117
118
    def memory_required(self, input_shape):
        return self.model.memory_required(input_shape=input_shape)

119
    def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False):
120
121
122
123
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
124
125
        if disable_cfg1_optimization:
            self.model_options["disable_cfg1_optimization"] = True
126

127
    def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
128
        self.model_options["sampler_post_cfg_function"] = self.model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
129
130
        if disable_cfg1_optimization:
            self.model_options["disable_cfg1_optimization"] = True
131

132
    def set_model_unet_function_wrapper(self, unet_wrapper_function: UnetWrapperFunction):
133
134
        self.model_options["model_function_wrapper"] = unet_wrapper_function

135
136
137
    def set_model_denoise_mask_function(self, denoise_mask_function):
        self.model_options["denoise_mask_function"] = denoise_mask_function

138
139
140
141
142
143
    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

144
    def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None):
comfyanonymous's avatar
comfyanonymous committed
145
        self.model_options = set_model_options_patch_replace(self.model_options, patch, name, block_name, number, transformer_index=transformer_index)
146
147
148
149
150
151
152

    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

153
154
    def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None):
        self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index)
155

156
157
    def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None):
        self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index)
158
159
160
161
162
163
164

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

165
166
167
    def set_model_input_block_patch(self, patch):
        self.set_model_patch(patch, "input_block_patch")

168
169
170
    def set_model_input_block_patch_after_skip(self, patch):
        self.set_model_patch(patch, "input_block_patch_after_skip")

171
172
173
    def set_model_output_block_patch(self, patch):
        self.set_model_patch(patch, "output_block_patch")

174
175
176
    def add_object_patch(self, name, obj):
        self.object_patches[name] = obj

177
178
179
180
    def get_model_object(self, name):
        if name in self.object_patches:
            return self.object_patches[name]
        else:
181
182
183
184
            if name in self.object_patches_backup:
                return self.object_patches_backup[name]
            else:
                return comfy.utils.get_attr(self.model, name)
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
202
203
        if "model_function_wrapper" in self.model_options:
            wrap_func = self.model_options["model_function_wrapper"]
204
            if hasattr(wrap_func, "to"):
205
                self.model_options["model_function_wrapper"] = wrap_func.to(device)
206
207
208
209
210
211
212
213
214
215
216
217
218
219

    def model_dtype(self):
        if hasattr(self.model, "get_dtype"):
            return self.model.get_dtype()

    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
        p = set()
        for k in patches:
            if k in self.model_keys:
                p.add(k)
                current_patches = self.patches.get(k, [])
                current_patches.append((strength_patch, patches[k], strength_model))
                self.patches[k] = current_patches

220
        self.patches_uuid = uuid.uuid4()
221
222
223
        return list(p)

    def get_key_patches(self, filter_prefix=None):
comfyanonymous's avatar
comfyanonymous committed
224
        comfy.model_management.unload_model_clones(self)
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        model_sd = self.model_state_dict()
        p = {}
        for k in model_sd:
            if filter_prefix is not None:
                if not k.startswith(filter_prefix):
                    continue
            if k in self.patches:
                p[k] = [model_sd[k]] + self.patches[k]
            else:
                p[k] = (model_sd[k],)
        return p

    def model_state_dict(self, filter_prefix=None):
        sd = self.model.state_dict()
        keys = list(sd.keys())
        if filter_prefix is not None:
            for k in keys:
                if not k.startswith(filter_prefix):
                    sd.pop(k)
        return sd

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    def patch_weight_to_device(self, key, device_to=None):
        if key not in self.patches:
            return

        weight = comfy.utils.get_attr(self.model, key)

        inplace_update = self.weight_inplace_update

        if key not in self.backup:
            self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update)

        if device_to is not None:
            temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
        else:
            temp_weight = weight.to(torch.float32, copy=True)
        out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
        if inplace_update:
            comfy.utils.copy_to_param(self.model, key, out_weight)
        else:
            comfy.utils.set_attr_param(self.model, key, out_weight)

267
    def patch_model(self, device_to=None, patch_weights=True):
268
        for k in self.object_patches:
269
            old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
270
271
272
            if k not in self.object_patches_backup:
                self.object_patches_backup[k] = old

273
274
275
276
        if patch_weights:
            model_sd = self.model_state_dict()
            for key in self.patches:
                if key not in model_sd:
277
                    logging.warning("could not patch. key doesn't exist in model: {}".format(key))
278
                    continue
279

280
                self.patch_weight_to_device(key, device_to)
281

282
283
284
            if device_to is not None:
                self.model.to(device_to)
                self.current_device = device_to
285
286
287

        return self.model

288
    def patch_model_lowvram(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False):
289
290
291
292
293
294
295
296
297
298
299
        self.patch_model(device_to, patch_weights=False)

        logging.info("loading in lowvram mode {}".format(lowvram_model_memory/(1024 * 1024)))
        class LowVramPatch:
            def __init__(self, key, model_patcher):
                self.key = key
                self.model_patcher = model_patcher
            def __call__(self, weight):
                return self.model_patcher.calculate_weight(self.model_patcher.patches[self.key], weight, self.key)

        mem_counter = 0
300
        patch_counter = 0
301
302
303
304
305
306
307
308
309
310
311
312
        for n, m in self.model.named_modules():
            lowvram_weight = False
            if hasattr(m, "comfy_cast_weights"):
                module_mem = comfy.model_management.module_size(m)
                if mem_counter + module_mem >= lowvram_model_memory:
                    lowvram_weight = True

            weight_key = "{}.weight".format(n)
            bias_key = "{}.bias".format(n)

            if lowvram_weight:
                if weight_key in self.patches:
313
314
315
316
                    if force_patch_weights:
                        self.patch_weight_to_device(weight_key)
                    else:
                        m.weight_function = LowVramPatch(weight_key, self)
317
                        patch_counter += 1
318
                if bias_key in self.patches:
319
320
321
322
                    if force_patch_weights:
                        self.patch_weight_to_device(bias_key)
                    else:
                        m.bias_function = LowVramPatch(bias_key, self)
323
                        patch_counter += 1
324
325
326
327
328
329
330
331
332
333
334
335

                m.prev_comfy_cast_weights = m.comfy_cast_weights
                m.comfy_cast_weights = True
            else:
                if hasattr(m, "weight"):
                    self.patch_weight_to_device(weight_key, device_to)
                    self.patch_weight_to_device(bias_key, device_to)
                    m.to(device_to)
                    mem_counter += comfy.model_management.module_size(m)
                    logging.debug("lowvram: loaded module regularly {}".format(m))

        self.model_lowvram = True
336
        self.lowvram_patch_counter = patch_counter
337
338
        return self.model

339
340
    def calculate_weight(self, patches, weight, key):
        for p in patches:
comfyanonymous's avatar
comfyanonymous committed
341
            strength = p[0]
342
343
344
345
346
347
348
349
350
351
            v = p[1]
            strength_model = p[2]

            if strength_model != 1.0:
                weight *= strength_model

            if isinstance(v, list):
                v = (self.calculate_weight(v[1:], v[0].clone(), key), )

            if len(v) == 1:
comfyanonymous's avatar
comfyanonymous committed
352
353
354
355
356
357
                patch_type = "diff"
            elif len(v) == 2:
                patch_type = v[0]
                v = v[1]

            if patch_type == "diff":
358
                w1 = v[0]
comfyanonymous's avatar
comfyanonymous committed
359
                if strength != 0.0:
360
                    if w1.shape != weight.shape:
361
                        logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
362
                    else:
comfyanonymous's avatar
comfyanonymous committed
363
                        weight += strength * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype)
comfyanonymous's avatar
comfyanonymous committed
364
            elif patch_type == "lora": #lora/locon
365
366
                mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
                mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
367
                dora_scale = v[4]
368
                if v[2] is not None:
comfyanonymous's avatar
comfyanonymous committed
369
370
371
372
                    alpha = v[2] / mat2.shape[0]
                else:
                    alpha = 1.0

373
374
                if v[3] is not None:
                    #locon mid weights, hopefully the math is fine because I didn't properly test it
375
                    mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32)
376
377
378
                    final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
                    mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
                try:
comfyanonymous's avatar
comfyanonymous committed
379
                    lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
380
                    if dora_scale is not None:
comfyanonymous's avatar
comfyanonymous committed
381
382
383
                        weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength)
                    else:
                        weight += ((strength * alpha) * lora_diff).type(weight.dtype)
384
                except Exception as e:
385
                    logging.error("ERROR {} {} {}".format(patch_type, key, e))
comfyanonymous's avatar
comfyanonymous committed
386
            elif patch_type == "lokr":
387
388
389
390
391
392
393
                w1 = v[0]
                w2 = v[1]
                w1_a = v[3]
                w1_b = v[4]
                w2_a = v[5]
                w2_b = v[6]
                t2 = v[7]
394
                dora_scale = v[8]
395
396
397
398
                dim = None

                if w1 is None:
                    dim = w1_b.shape[0]
399
400
                    w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32),
                                  comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32))
401
                else:
402
                    w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32)
403
404
405
406

                if w2 is None:
                    dim = w2_b.shape[0]
                    if t2 is None:
407
408
                        w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32))
409
                    else:
410
411
412
413
                        w2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                          comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
                                          comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32),
                                          comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32))
414
                else:
415
                    w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32)
416
417
418
419

                if len(w2.shape) == 4:
                    w1 = w1.unsqueeze(2).unsqueeze(2)
                if v[2] is not None and dim is not None:
comfyanonymous's avatar
comfyanonymous committed
420
421
422
                    alpha = v[2] / dim
                else:
                    alpha = 1.0
423
424

                try:
comfyanonymous's avatar
comfyanonymous committed
425
                    lora_diff = torch.kron(w1, w2).reshape(weight.shape)
426
                    if dora_scale is not None:
comfyanonymous's avatar
comfyanonymous committed
427
428
429
                        weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength)
                    else:
                        weight += ((strength * alpha) * lora_diff).type(weight.dtype)
430
                except Exception as e:
431
                    logging.error("ERROR {} {} {}".format(patch_type, key, e))
comfyanonymous's avatar
comfyanonymous committed
432
            elif patch_type == "loha":
433
434
435
                w1a = v[0]
                w1b = v[1]
                if v[2] is not None:
comfyanonymous's avatar
comfyanonymous committed
436
437
438
439
                    alpha = v[2] / w1b.shape[0]
                else:
                    alpha = 1.0

440
441
                w2a = v[3]
                w2b = v[4]
442
                dora_scale = v[7]
443
444
445
                if v[5] is not None: #cp decomposition
                    t1 = v[5]
                    t2 = v[6]
446
447
448
449
450
451
452
453
454
                    m1 = torch.einsum('i j k l, j r, i p -> p r k l',
                                      comfy.model_management.cast_to_device(t1, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w1b, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w1a, weight.device, torch.float32))

                    m2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                      comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w2b, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w2a, weight.device, torch.float32))
455
                else:
456
457
458
459
                    m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32),
                                  comfy.model_management.cast_to_device(w1b, weight.device, torch.float32))
                    m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32),
                                  comfy.model_management.cast_to_device(w2b, weight.device, torch.float32))
460
461

                try:
comfyanonymous's avatar
comfyanonymous committed
462
                    lora_diff = (m1 * m2).reshape(weight.shape)
463
                    if dora_scale is not None:
comfyanonymous's avatar
comfyanonymous committed
464
465
466
                        weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength)
                    else:
                        weight += ((strength * alpha) * lora_diff).type(weight.dtype)
467
                except Exception as e:
468
                    logging.error("ERROR {} {} {}".format(patch_type, key, e))
comfyanonymous's avatar
comfyanonymous committed
469
470
            elif patch_type == "glora":
                if v[4] is not None:
comfyanonymous's avatar
comfyanonymous committed
471
472
473
                    alpha = v[4] / v[0].shape[0]
                else:
                    alpha = 1.0
comfyanonymous's avatar
comfyanonymous committed
474

475
476
                dora_scale = v[5]

comfyanonymous's avatar
comfyanonymous committed
477
478
479
480
481
                a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32)
                a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32)
                b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
                b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)

482
                try:
comfyanonymous's avatar
comfyanonymous committed
483
                    lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)).reshape(weight.shape)
484
                    if dora_scale is not None:
comfyanonymous's avatar
comfyanonymous committed
485
486
487
                        weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength)
                    else:
                        weight += ((strength * alpha) * lora_diff).type(weight.dtype)
488
489
                except Exception as e:
                    logging.error("ERROR {} {} {}".format(patch_type, key, e))
comfyanonymous's avatar
comfyanonymous committed
490
            else:
491
                logging.warning("patch type not recognized {} {}".format(patch_type, key))
492
493
494

        return weight

495
496
497
498
499
500
501
502
503
    def unpatch_model(self, device_to=None, unpatch_weights=True):
        if unpatch_weights:
            if self.model_lowvram:
                for m in self.model.modules():
                    if hasattr(m, "prev_comfy_cast_weights"):
                        m.comfy_cast_weights = m.prev_comfy_cast_weights
                        del m.prev_comfy_cast_weights
                    m.weight_function = None
                    m.bias_function = None
504

505
                self.model_lowvram = False
506
                self.lowvram_patch_counter = 0
507

508
            keys = list(self.backup.keys())
509

510
511
512
513
514
515
            if self.weight_inplace_update:
                for k in keys:
                    comfy.utils.copy_to_param(self.model, k, self.backup[k])
            else:
                for k in keys:
                    comfy.utils.set_attr_param(self.model, k, self.backup[k])
516

517
            self.backup.clear()
518

519
520
521
            if device_to is not None:
                self.model.to(device_to)
                self.current_device = device_to
522
523
524

        keys = list(self.object_patches_backup.keys())
        for k in keys:
525
            comfy.utils.set_attr(self.model, k, self.object_patches_backup[k])
526

527
        self.object_patches_backup.clear()