"vscode:/vscode.git/clone" did not exist on "8fd9aae33bb5e0e3d7832bf03f8f49e9fcf875cc"
model_detection.py 26.7 KB
Newer Older
1
2
import comfy.supported_models
import comfy.supported_models_base
3
import comfy.utils
comfyanonymous's avatar
comfyanonymous committed
4
import math
5
import logging
6
import torch
7
8
9
10
11
12
13
14
15
16
17
18
19
20

def count_blocks(state_dict_keys, prefix_string):
    count = 0
    while True:
        c = False
        for k in state_dict_keys:
            if k.startswith(prefix_string.format(count)):
                c = True
                break
        if c == False:
            break
        count += 1
    return count

21
22
23
24
25
26
27
28
29
30
def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
    context_dim = None
    use_linear_in_transformer = False

    transformer_prefix = prefix + "1.transformer_blocks."
    transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
    if len(transformer_keys) > 0:
        last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
        context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
        use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
comfyanonymous's avatar
comfyanonymous committed
31
        time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict
comfyanonymous's avatar
comfyanonymous committed
32
33
        time_stack_cross = '{}1.time_stack.0.attn2.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn2.to_q.weight'.format(prefix) in state_dict
        return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack, time_stack_cross
34
35
    return None

comfyanonymous's avatar
comfyanonymous committed
36
def detect_unet_config(state_dict, key_prefix):
37
38
    state_dict_keys = list(state_dict.keys())

comfyanonymous's avatar
comfyanonymous committed
39
40
41
42
43
    if '{}joint_blocks.0.context_block.attn.qkv.weight'.format(key_prefix) in state_dict_keys: #mmdit model
        unet_config = {}
        unet_config["in_channels"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[1]
        patch_size = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[2]
        unet_config["patch_size"] = patch_size
44
45
46
        final_layer = '{}final_layer.linear.weight'.format(key_prefix)
        if final_layer in state_dict:
            unet_config["out_channels"] = state_dict[final_layer].shape[0] // (patch_size * patch_size)
comfyanonymous's avatar
comfyanonymous committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

        unet_config["depth"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0] // 64
        unet_config["input_size"] = None
        y_key = '{}y_embedder.mlp.0.weight'.format(key_prefix)
        if y_key in state_dict_keys:
            unet_config["adm_in_channels"] = state_dict[y_key].shape[1]

        context_key = '{}context_embedder.weight'.format(key_prefix)
        if context_key in state_dict_keys:
            in_features = state_dict[context_key].shape[1]
            out_features = state_dict[context_key].shape[0]
            unet_config["context_embedder_config"] = {"target": "torch.nn.Linear", "params": {"in_features": in_features, "out_features": out_features}}
        num_patches_key = '{}pos_embed'.format(key_prefix)
        if num_patches_key in state_dict_keys:
            num_patches = state_dict[num_patches_key].shape[1]
            unet_config["num_patches"] = num_patches
            unet_config["pos_embed_max_size"] = round(math.sqrt(num_patches))

        rms_qk = '{}joint_blocks.0.context_block.attn.ln_q.weight'.format(key_prefix)
        if rms_qk in state_dict_keys:
            unet_config["qk_norm"] = "rms"

        unet_config["pos_embed_scaling_factor"] = None #unused for inference
        context_processor = '{}context_processor.layers.0.attn.qkv.weight'.format(key_prefix)
        if context_processor in state_dict_keys:
            unet_config["context_processor_layers"] = count_blocks(state_dict_keys, '{}context_processor.layers.'.format(key_prefix) + '{}.')
        return unet_config

comfyanonymous's avatar
comfyanonymous committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: #stable cascade
        unet_config = {}
        text_mapper_name = '{}clip_txt_mapper.weight'.format(key_prefix)
        if text_mapper_name in state_dict_keys:
            unet_config['stable_cascade_stage'] = 'c'
            w = state_dict[text_mapper_name]
            if w.shape[0] == 1536: #stage c lite
                unet_config['c_cond'] = 1536
                unet_config['c_hidden'] = [1536, 1536]
                unet_config['nhead'] = [24, 24]
                unet_config['blocks'] = [[4, 12], [12, 4]]
            elif w.shape[0] == 2048: #stage c full
                unet_config['c_cond'] = 2048
        elif '{}clip_mapper.weight'.format(key_prefix) in state_dict_keys:
            unet_config['stable_cascade_stage'] = 'b'
90
91
92
93
94
95
96
97
98
99
100
            w = state_dict['{}down_blocks.1.0.channelwise.0.weight'.format(key_prefix)]
            if w.shape[-1] == 640:
                unet_config['c_hidden'] = [320, 640, 1280, 1280]
                unet_config['nhead'] = [-1, -1, 20, 20]
                unet_config['blocks'] = [[2, 6, 28, 6], [6, 28, 6, 2]]
                unet_config['block_repeat'] = [[1, 1, 1, 1], [3, 3, 2, 2]]
            elif w.shape[-1] == 576: #stage b lite
                unet_config['c_hidden'] = [320, 576, 1152, 1152]
                unet_config['nhead'] = [-1, 9, 18, 18]
                unet_config['blocks'] = [[2, 4, 14, 4], [4, 14, 4, 2]]
                unet_config['block_repeat'] = [[1, 1, 1, 1], [2, 2, 2, 2]]
comfyanonymous's avatar
comfyanonymous committed
101
102
        return unet_config

103
104
105
106
107
    if '{}transformer.rotary_pos_emb.inv_freq'.format(key_prefix) in state_dict_keys: #stable audio dit
        unet_config = {}
        unet_config["audio_model"] = "dit1.0"
        return unet_config

108
109
110
111
112
113
    if '{}double_layers.0.attn.w1q.weight'.format(key_prefix) in state_dict_keys: #aura flow dit
        unet_config = {}
        unet_config["max_seq"] = state_dict['{}positional_encoding'.format(key_prefix)].shape[1]
        unet_config["cond_seq_dim"] = state_dict['{}cond_seq_linear.weight'.format(key_prefix)].shape[1]
        return unet_config

114
115
116
    if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
        return None

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    unet_config = {
        "use_checkpoint": False,
        "image_size": 32,
        "use_spatial_transformer": True,
        "legacy": False
    }

    y_input = '{}label_emb.0.0.weight'.format(key_prefix)
    if y_input in state_dict_keys:
        unet_config["num_classes"] = "sequential"
        unet_config["adm_in_channels"] = state_dict[y_input].shape[1]
    else:
        unet_config["adm_in_channels"] = None

    model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0]
    in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1]
comfyanonymous's avatar
comfyanonymous committed
133
134
135
136
137
138

    out_key = '{}out.2.weight'.format(key_prefix)
    if out_key in state_dict:
        out_channels = state_dict[out_key].shape[0]
    else:
        out_channels = 4
139
140
141
142
143

    num_res_blocks = []
    channel_mult = []
    attention_resolutions = []
    transformer_depth = []
144
    transformer_depth_output = []
145
146
147
    context_dim = None
    use_linear_in_transformer = False

comfyanonymous's avatar
comfyanonymous committed
148
    video_model = False
comfyanonymous's avatar
comfyanonymous committed
149
    video_model_cross = False
150
151
152
153
154
155
156

    current_res = 1
    count = 0

    last_res_blocks = 0
    last_channel_mult = 0

157
158
    input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.')
    for count in range(input_block_count):
159
        prefix = '{}input_blocks.{}.'.format(key_prefix, count)
160
161
        prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1)

162
163
164
165
        block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys)))
        if len(block_keys) == 0:
            break

166
167
        block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys)))

168
169
170
171
172
173
174
        if "{}0.op.weight".format(prefix) in block_keys: #new layer
            num_res_blocks.append(last_res_blocks)
            channel_mult.append(last_channel_mult)

            current_res *= 2
            last_res_blocks = 0
            last_channel_mult = 0
175
176
177
178
179
            out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
            if out is not None:
                transformer_depth_output.append(out[0])
            else:
                transformer_depth_output.append(0)
180
181
182
183
184
185
        else:
            res_block_prefix = "{}0.in_layers.0.weight".format(prefix)
            if res_block_prefix in block_keys:
                last_res_blocks += 1
                last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels

186
187
188
189
190
191
                out = calculate_transformer_depth(prefix, state_dict_keys, state_dict)
                if out is not None:
                    transformer_depth.append(out[0])
                    if context_dim is None:
                        context_dim = out[1]
                        use_linear_in_transformer = out[2]
comfyanonymous's avatar
comfyanonymous committed
192
                        video_model = out[3]
comfyanonymous's avatar
comfyanonymous committed
193
                        video_model_cross = out[4]
194
195
196
197
198
199
200
201
202
203
                else:
                    transformer_depth.append(0)

            res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output)
            if res_block_prefix in block_keys_output:
                out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
                if out is not None:
                    transformer_depth_output.append(out[0])
                else:
                    transformer_depth_output.append(0)
204
205
206
207


    num_res_blocks.append(last_res_blocks)
    channel_mult.append(last_channel_mult)
208
209
    if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys:
        transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}')
comfyanonymous's avatar
comfyanonymous committed
210
    elif "{}middle_block.0.in_layers.0.weight".format(key_prefix) in state_dict_keys:
211
        transformer_depth_middle = -1
comfyanonymous's avatar
comfyanonymous committed
212
213
    else:
        transformer_depth_middle = -2
214
215

    unet_config["in_channels"] = in_channels
216
    unet_config["out_channels"] = out_channels
217
218
219
    unet_config["model_channels"] = model_channels
    unet_config["num_res_blocks"] = num_res_blocks
    unet_config["transformer_depth"] = transformer_depth
220
    unet_config["transformer_depth_output"] = transformer_depth_output
221
222
223
224
    unet_config["channel_mult"] = channel_mult
    unet_config["transformer_depth_middle"] = transformer_depth_middle
    unet_config['use_linear_in_transformer'] = use_linear_in_transformer
    unet_config["context_dim"] = context_dim
comfyanonymous's avatar
comfyanonymous committed
225
226
227
228
229
230
231
232
233

    if video_model:
        unet_config["extra_ff_mix_layer"] = True
        unet_config["use_spatial_context"] = True
        unet_config["merge_strategy"] = "learned_with_images"
        unet_config["merge_factor"] = 0.0
        unet_config["video_kernel_size"] = [3, 1, 1]
        unet_config["use_temporal_resblock"] = True
        unet_config["use_temporal_attention"] = True
comfyanonymous's avatar
comfyanonymous committed
234
        unet_config["disable_temporal_crossattention"] = not video_model_cross
comfyanonymous's avatar
comfyanonymous committed
235
236
237
238
    else:
        unet_config["use_temporal_resblock"] = False
        unet_config["use_temporal_attention"] = False

239
240
    return unet_config

comfyanonymous's avatar
comfyanonymous committed
241
def model_config_from_unet_config(unet_config, state_dict=None):
242
    for model_config in comfy.supported_models.models:
comfyanonymous's avatar
comfyanonymous committed
243
        if model_config.matches(unet_config, state_dict):
244
245
            return model_config(unet_config)

246
    logging.error("no match {}".format(unet_config))
247
    return None
248

comfyanonymous's avatar
comfyanonymous committed
249
250
def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False):
    unet_config = detect_unet_config(state_dict, unet_key_prefix)
251
252
    if unet_config is None:
        return None
comfyanonymous's avatar
comfyanonymous committed
253
    model_config = model_config_from_unet_config(unet_config, state_dict)
254
255
256
257
    if model_config is None and use_base_if_no_match:
        return comfy.supported_models_base.BASE(unet_config)
    else:
        return model_config
258

259
260
261
def unet_prefix_from_state_dict(state_dict):
    if "model.model.postprocess_conv.weight" in state_dict: #audio models
        unet_key_prefix = "model.model."
262
263
    elif "model.double_layers.0.attn.w1q.weight" in state_dict: #aura flow
        unet_key_prefix = "model."
264
265
266
267
    else:
        unet_key_prefix = "model.diffusion_model."
    return unet_key_prefix

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
def convert_config(unet_config):
    new_config = unet_config.copy()
    num_res_blocks = new_config.get("num_res_blocks", None)
    channel_mult = new_config.get("channel_mult", None)

    if isinstance(num_res_blocks, int):
        num_res_blocks = len(channel_mult) * [num_res_blocks]

    if "attention_resolutions" in new_config:
        attention_resolutions = new_config.pop("attention_resolutions")
        transformer_depth = new_config.get("transformer_depth", None)
        transformer_depth_middle = new_config.get("transformer_depth_middle", None)

        if isinstance(transformer_depth, int):
            transformer_depth = len(channel_mult) * [transformer_depth]
        if transformer_depth_middle is None:
            transformer_depth_middle =  transformer_depth[-1]
        t_in = []
        t_out = []
        s = 1
        for i in range(len(num_res_blocks)):
            res = num_res_blocks[i]
            d = 0
            if s in attention_resolutions:
                d = transformer_depth[i]

            t_in += [d] * res
            t_out += [d] * (res + 1)
            s *= 2
        transformer_depth = t_in
        transformer_depth_output = t_out
        new_config["transformer_depth"] = t_in
        new_config["transformer_depth_output"] = t_out
        new_config["transformer_depth_middle"] = transformer_depth_middle

    new_config["num_res_blocks"] = num_res_blocks
    return new_config


comfyanonymous's avatar
comfyanonymous committed
307
def unet_config_from_diffusers_unet(state_dict, dtype=None):
308
    match = {}
309
    transformer_depth = []
310
311

    attn_res = 1
312
313
314
    down_blocks = count_blocks(state_dict, "down_blocks.{}")
    for i in range(down_blocks):
        attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}')
comfyanonymous's avatar
comfyanonymous committed
315
        res_blocks = count_blocks(state_dict, "down_blocks.{}.resnets.".format(i) + '{}')
316
317
318
319
320
321
        for ab in range(attn_blocks):
            transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}')
            transformer_depth.append(transformer_count)
            if transformer_count > 0:
                match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1]

322
        attn_res *= 2
323
        if attn_blocks == 0:
comfyanonymous's avatar
comfyanonymous committed
324
325
            for i in range(res_blocks):
                transformer_depth.append(0)
326

327
    match["transformer_depth"] = transformer_depth
328

329
330
331
332
333
334
335
336
337
    match["model_channels"] = state_dict["conv_in.weight"].shape[0]
    match["in_channels"] = state_dict["conv_in.weight"].shape[1]
    match["adm_in_channels"] = None
    if "class_embedding.linear_1.weight" in state_dict:
        match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1]
    elif "add_embedding.linear_1.weight" in state_dict:
        match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1]

    SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
338
            'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
339
            'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
340
341
            'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
            'use_temporal_attention': False, 'use_temporal_resblock': False}
342
343

    SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
344
                    'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384,
345
                    'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4,
346
347
                    'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0],
                    'use_temporal_attention': False, 'use_temporal_resblock': False}
348
349

    SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
350
351
            'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2],
            'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True,
352
353
            'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
            'use_temporal_attention': False, 'use_temporal_resblock': False}
354
355

    SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
356
                    'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
357
                    'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
358
359
                    'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
                    'use_temporal_attention': False, 'use_temporal_resblock': False}
360
361

    SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
362
                    'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
363
                    'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
364
365
                    'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
                    'use_temporal_attention': False, 'use_temporal_resblock': False}
366

367
368
369
    SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None,
            'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
            'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8,
370
371
            'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
            'use_temporal_attention': False, 'use_temporal_resblock': False}
372

373
    SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
374
375
                     'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
                     'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1,
376
377
                     'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1],
                     'use_temporal_attention': False, 'use_temporal_resblock': False}
378

379
    SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
380
381
                       'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
                       'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0,
382
383
                       'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0],
                       'use_temporal_attention': False, 'use_temporal_resblock': False}
384

comfyanonymous's avatar
comfyanonymous committed
385
    SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
386
387
                              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320,
                              'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
388
389
                              'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
                              'use_temporal_attention': False, 'use_temporal_resblock': False}
390

comfyanonymous's avatar
comfyanonymous committed
391
392
393
394
395
396
    SDXL_diffusers_ip2p = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 8, 'model_channels': 320,
                              'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
                              'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
                              'use_temporal_attention': False, 'use_temporal_resblock': False}

397
398
399
    SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
              'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4],
400
401
              'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
              'use_temporal_attention': False, 'use_temporal_resblock': False}
402

comfyanonymous's avatar
comfyanonymous committed
403
404
405
406
407
408
    Segmind_Vega = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
              'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 1, 1, 2, 2], 'transformer_depth_output': [0, 0, 0, 1, 1, 1, 2, 2, 2],
              'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
              'use_temporal_attention': False, 'use_temporal_resblock': False}

comfyanonymous's avatar
comfyanonymous committed
409
410
411
412
413
414
415
416
417
418
419
420
    KOALA_700M = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
              'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 5], 'transformer_depth_output': [0, 0, 2, 2, 5, 5],
              'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
              'use_temporal_attention': False, 'use_temporal_resblock': False}

    KOALA_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
              'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 6], 'transformer_depth_output': [0, 0, 2, 2, 6, 6],
              'channel_mult': [1, 2, 4], 'transformer_depth_middle': 6, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
              'use_temporal_attention': False, 'use_temporal_resblock': False}

comfyanonymous's avatar
comfyanonymous committed
421
422
423
424
425
426
    SD09_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1],
            'transformer_depth': [1, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True,
            'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1],
            'use_temporal_attention': False, 'use_temporal_resblock': False, 'disable_self_attentions': [True, False, False]}

comfyanonymous's avatar
comfyanonymous committed
427
428
429
430
431
432
433
434
    SD_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1],
            'transformer_depth': [0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': False,
            'context_dim': 768, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 1, 1, 1, 1],
            'use_temporal_attention': False, 'use_temporal_resblock': False}


    supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p]
435
436
437
438
439
440
441
442

    for unet_config in supported_models:
        matches = True
        for k in match:
            if match[k] != unet_config[k]:
                matches = False
                break
        if matches:
443
            return convert_config(unet_config)
444
445
    return None

comfyanonymous's avatar
comfyanonymous committed
446
447
def model_config_from_diffusers_unet(state_dict):
    unet_config = unet_config_from_diffusers_unet(state_dict)
448
449
    if unet_config is not None:
        return model_config_from_unet_config(unet_config)
450
    return None
451
452

def convert_diffusers_mmdit(state_dict, output_prefix=""):
453
454
455
    num_blocks = count_blocks(state_dict, 'transformer_blocks.{}.')
    if num_blocks > 0:
        depth = state_dict["pos_embed.proj.weight"].shape[0] // 64
456
        out_sd = {}
457
        sd_map = comfy.utils.mmdit_to_diffusers({"depth": depth, "num_blocks": num_blocks}, output_prefix=output_prefix)
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        for k in sd_map:
            weight = state_dict.get(k, None)
            if weight is not None:
                t = sd_map[k]

                if not isinstance(t, str):
                    if len(t) > 2:
                        fun = t[2]
                    else:
                        fun = lambda a: a
                    offset = t[1]
                    if offset is not None:
                        old_weight = out_sd.get(t[0], None)
                        if old_weight is None:
                            old_weight = torch.empty_like(weight)
                            old_weight = old_weight.repeat([3] + [1] * (len(old_weight.shape) - 1))

                        w = old_weight.narrow(offset[0], offset[1], offset[2])
                    else:
                        old_weight = weight
                        w = weight
                    w[:] = fun(weight)
                    t = t[0]
                    out_sd[t] = old_weight
                else:
                    out_sd[t] = weight
                state_dict.pop(k)

    return out_sd