model_detection.py 18.4 KB
Newer Older
1
2
import comfy.supported_models
import comfy.supported_models_base
3
4
5
6
7
8
9
10
11
12
13
14
15
16

def count_blocks(state_dict_keys, prefix_string):
    count = 0
    while True:
        c = False
        for k in state_dict_keys:
            if k.startswith(prefix_string.format(count)):
                c = True
                break
        if c == False:
            break
        count += 1
    return count

17
18
19
20
21
22
23
24
25
26
def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
    context_dim = None
    use_linear_in_transformer = False

    transformer_prefix = prefix + "1.transformer_blocks."
    transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
    if len(transformer_keys) > 0:
        last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
        context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
        use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
comfyanonymous's avatar
comfyanonymous committed
27
28
        time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict
        return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack
29
30
    return None

comfyanonymous's avatar
comfyanonymous committed
31
def detect_unet_config(state_dict, key_prefix):
32
33
    state_dict_keys = list(state_dict.keys())

comfyanonymous's avatar
comfyanonymous committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: #stable cascade
        unet_config = {}
        text_mapper_name = '{}clip_txt_mapper.weight'.format(key_prefix)
        if text_mapper_name in state_dict_keys:
            unet_config['stable_cascade_stage'] = 'c'
            w = state_dict[text_mapper_name]
            if w.shape[0] == 1536: #stage c lite
                unet_config['c_cond'] = 1536
                unet_config['c_hidden'] = [1536, 1536]
                unet_config['nhead'] = [24, 24]
                unet_config['blocks'] = [[4, 12], [12, 4]]
            elif w.shape[0] == 2048: #stage c full
                unet_config['c_cond'] = 2048
        elif '{}clip_mapper.weight'.format(key_prefix) in state_dict_keys:
            unet_config['stable_cascade_stage'] = 'b'
49
50
51
52
53
54
55
56
57
58
59
60
            w = state_dict['{}down_blocks.1.0.channelwise.0.weight'.format(key_prefix)]
            if w.shape[-1] == 640:
                unet_config['c_hidden'] = [320, 640, 1280, 1280]
                unet_config['nhead'] = [-1, -1, 20, 20]
                unet_config['blocks'] = [[2, 6, 28, 6], [6, 28, 6, 2]]
                unet_config['block_repeat'] = [[1, 1, 1, 1], [3, 3, 2, 2]]
            elif w.shape[-1] == 576: #stage b lite
                unet_config['c_hidden'] = [320, 576, 1152, 1152]
                unet_config['nhead'] = [-1, 9, 18, 18]
                unet_config['blocks'] = [[2, 4, 14, 4], [4, 14, 4, 2]]
                unet_config['block_repeat'] = [[1, 1, 1, 1], [2, 2, 2, 2]]

comfyanonymous's avatar
comfyanonymous committed
61
62
        return unet_config

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    unet_config = {
        "use_checkpoint": False,
        "image_size": 32,
        "use_spatial_transformer": True,
        "legacy": False
    }

    y_input = '{}label_emb.0.0.weight'.format(key_prefix)
    if y_input in state_dict_keys:
        unet_config["num_classes"] = "sequential"
        unet_config["adm_in_channels"] = state_dict[y_input].shape[1]
    else:
        unet_config["adm_in_channels"] = None

    model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0]
    in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1]
comfyanonymous's avatar
comfyanonymous committed
79
80
81
82
83
84

    out_key = '{}out.2.weight'.format(key_prefix)
    if out_key in state_dict:
        out_channels = state_dict[out_key].shape[0]
    else:
        out_channels = 4
85
86
87
88
89

    num_res_blocks = []
    channel_mult = []
    attention_resolutions = []
    transformer_depth = []
90
    transformer_depth_output = []
91
92
93
    context_dim = None
    use_linear_in_transformer = False

comfyanonymous's avatar
comfyanonymous committed
94
    video_model = False
95
96
97
98
99
100
101

    current_res = 1
    count = 0

    last_res_blocks = 0
    last_channel_mult = 0

102
103
    input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.')
    for count in range(input_block_count):
104
        prefix = '{}input_blocks.{}.'.format(key_prefix, count)
105
106
        prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1)

107
108
109
110
        block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys)))
        if len(block_keys) == 0:
            break

111
112
        block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys)))

113
114
115
116
117
118
119
        if "{}0.op.weight".format(prefix) in block_keys: #new layer
            num_res_blocks.append(last_res_blocks)
            channel_mult.append(last_channel_mult)

            current_res *= 2
            last_res_blocks = 0
            last_channel_mult = 0
120
121
122
123
124
            out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
            if out is not None:
                transformer_depth_output.append(out[0])
            else:
                transformer_depth_output.append(0)
125
126
127
128
129
130
        else:
            res_block_prefix = "{}0.in_layers.0.weight".format(prefix)
            if res_block_prefix in block_keys:
                last_res_blocks += 1
                last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels

131
132
133
134
135
136
                out = calculate_transformer_depth(prefix, state_dict_keys, state_dict)
                if out is not None:
                    transformer_depth.append(out[0])
                    if context_dim is None:
                        context_dim = out[1]
                        use_linear_in_transformer = out[2]
comfyanonymous's avatar
comfyanonymous committed
137
                        video_model = out[3]
138
139
140
141
142
143
144
145
146
147
                else:
                    transformer_depth.append(0)

            res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output)
            if res_block_prefix in block_keys_output:
                out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
                if out is not None:
                    transformer_depth_output.append(out[0])
                else:
                    transformer_depth_output.append(0)
148
149
150
151


    num_res_blocks.append(last_res_blocks)
    channel_mult.append(last_channel_mult)
152
153
154
155
    if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys:
        transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}')
    else:
        transformer_depth_middle = -1
156
157

    unet_config["in_channels"] = in_channels
158
    unet_config["out_channels"] = out_channels
159
160
161
    unet_config["model_channels"] = model_channels
    unet_config["num_res_blocks"] = num_res_blocks
    unet_config["transformer_depth"] = transformer_depth
162
    unet_config["transformer_depth_output"] = transformer_depth_output
163
164
165
166
    unet_config["channel_mult"] = channel_mult
    unet_config["transformer_depth_middle"] = transformer_depth_middle
    unet_config['use_linear_in_transformer'] = use_linear_in_transformer
    unet_config["context_dim"] = context_dim
comfyanonymous's avatar
comfyanonymous committed
167
168
169
170
171
172
173
174
175
176
177
178
179

    if video_model:
        unet_config["extra_ff_mix_layer"] = True
        unet_config["use_spatial_context"] = True
        unet_config["merge_strategy"] = "learned_with_images"
        unet_config["merge_factor"] = 0.0
        unet_config["video_kernel_size"] = [3, 1, 1]
        unet_config["use_temporal_resblock"] = True
        unet_config["use_temporal_attention"] = True
    else:
        unet_config["use_temporal_resblock"] = False
        unet_config["use_temporal_attention"] = False

180
181
    return unet_config

182
def model_config_from_unet_config(unet_config):
183
    for model_config in comfy.supported_models.models:
184
185
186
        if model_config.matches(unet_config):
            return model_config(unet_config)

187
    print("no match", unet_config)
188
    return None
189

comfyanonymous's avatar
comfyanonymous committed
190
191
def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False):
    unet_config = detect_unet_config(state_dict, unet_key_prefix)
192
193
194
195
196
    model_config = model_config_from_unet_config(unet_config)
    if model_config is None and use_base_if_no_match:
        return comfy.supported_models_base.BASE(unet_config)
    else:
        return model_config
197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
def convert_config(unet_config):
    new_config = unet_config.copy()
    num_res_blocks = new_config.get("num_res_blocks", None)
    channel_mult = new_config.get("channel_mult", None)

    if isinstance(num_res_blocks, int):
        num_res_blocks = len(channel_mult) * [num_res_blocks]

    if "attention_resolutions" in new_config:
        attention_resolutions = new_config.pop("attention_resolutions")
        transformer_depth = new_config.get("transformer_depth", None)
        transformer_depth_middle = new_config.get("transformer_depth_middle", None)

        if isinstance(transformer_depth, int):
            transformer_depth = len(channel_mult) * [transformer_depth]
        if transformer_depth_middle is None:
            transformer_depth_middle =  transformer_depth[-1]
        t_in = []
        t_out = []
        s = 1
        for i in range(len(num_res_blocks)):
            res = num_res_blocks[i]
            d = 0
            if s in attention_resolutions:
                d = transformer_depth[i]

            t_in += [d] * res
            t_out += [d] * (res + 1)
            s *= 2
        transformer_depth = t_in
        transformer_depth_output = t_out
        new_config["transformer_depth"] = t_in
        new_config["transformer_depth_output"] = t_out
        new_config["transformer_depth_middle"] = transformer_depth_middle

    new_config["num_res_blocks"] = num_res_blocks
    return new_config


comfyanonymous's avatar
comfyanonymous committed
237
def unet_config_from_diffusers_unet(state_dict, dtype=None):
238
    match = {}
239
    transformer_depth = []
240
241

    attn_res = 1
242
243
244
245
246
247
248
249
250
    down_blocks = count_blocks(state_dict, "down_blocks.{}")
    for i in range(down_blocks):
        attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}')
        for ab in range(attn_blocks):
            transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}')
            transformer_depth.append(transformer_count)
            if transformer_count > 0:
                match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1]

251
        attn_res *= 2
252
253
254
        if attn_blocks == 0:
            transformer_depth.append(0)
            transformer_depth.append(0)
255

256
    match["transformer_depth"] = transformer_depth
257

258
259
260
261
262
263
264
265
266
    match["model_channels"] = state_dict["conv_in.weight"].shape[0]
    match["in_channels"] = state_dict["conv_in.weight"].shape[1]
    match["adm_in_channels"] = None
    if "class_embedding.linear_1.weight" in state_dict:
        match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1]
    elif "add_embedding.linear_1.weight" in state_dict:
        match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1]

    SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
267
            'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
268
            'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
269
270
            'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
            'use_temporal_attention': False, 'use_temporal_resblock': False}
271
272

    SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
273
                    'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384,
274
                    'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4,
275
276
                    'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0],
                    'use_temporal_attention': False, 'use_temporal_resblock': False}
277
278

    SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
279
280
            'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2],
            'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True,
281
282
            'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
            'use_temporal_attention': False, 'use_temporal_resblock': False}
283
284

    SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
285
                    'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
286
                    'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
287
288
                    'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
                    'use_temporal_attention': False, 'use_temporal_resblock': False}
289
290

    SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
291
                    'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
292
                    'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
293
294
                    'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
                    'use_temporal_attention': False, 'use_temporal_resblock': False}
295

296
297
298
    SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None,
            'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
            'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8,
299
300
            'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
            'use_temporal_attention': False, 'use_temporal_resblock': False}
301

302
    SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
303
304
                     'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
                     'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1,
305
306
                     'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1],
                     'use_temporal_attention': False, 'use_temporal_resblock': False}
307

308
    SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
309
310
                       'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
                       'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0,
311
312
                       'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0],
                       'use_temporal_attention': False, 'use_temporal_resblock': False}
313

comfyanonymous's avatar
comfyanonymous committed
314
    SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
315
316
                              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320,
                              'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
317
318
                              'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
                              'use_temporal_attention': False, 'use_temporal_resblock': False}
319
320
321
322

    SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
              'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4],
323
324
              'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
              'use_temporal_attention': False, 'use_temporal_resblock': False}
325

comfyanonymous's avatar
comfyanonymous committed
326
327
328
329
330
331
332
    Segmind_Vega = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
              'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 1, 1, 2, 2], 'transformer_depth_output': [0, 0, 0, 1, 1, 1, 2, 2, 2],
              'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
              'use_temporal_attention': False, 'use_temporal_resblock': False}

    supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega]
333
334
335
336
337
338
339
340

    for unet_config in supported_models:
        matches = True
        for k in match:
            if match[k] != unet_config[k]:
                matches = False
                break
        if matches:
341
            return convert_config(unet_config)
342
343
    return None

comfyanonymous's avatar
comfyanonymous committed
344
345
def model_config_from_diffusers_unet(state_dict):
    unet_config = unet_config_from_diffusers_unet(state_dict)
346
347
    if unet_config is not None:
        return model_config_from_unet_config(unet_config)
348
    return None