nodes_model_advanced.py 7.14 KB
Newer Older
1
2
3
import folder_paths
import comfy.sd
import comfy.model_sampling
comfyanonymous's avatar
comfyanonymous committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch

class LCM(comfy.model_sampling.EPS):
    def calculate_denoised(self, sigma, model_output, model_input):
        timestep = self.timestep(sigma).view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        x0 = model_input - model_output * sigma

        sigma_data = 0.5
        scaled_timestep = timestep * 10.0 #timestep_scaling

        c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
        c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5

        return c_out * x0 + c_skip * model_input

class ModelSamplingDiscreteLCM(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.sigma_data = 1.0
        timesteps = 1000
        beta_start = 0.00085
        beta_end = 0.012

        betas = torch.linspace(beta_start**0.5, beta_end**0.5, timesteps, dtype=torch.float32) ** 2
        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, dim=0)

        original_timesteps = 50
        self.skip_steps = timesteps // original_timesteps


        alphas_cumprod_valid = torch.zeros((original_timesteps), dtype=torch.float32)
        for x in range(original_timesteps):
            alphas_cumprod_valid[original_timesteps - 1 - x] = alphas_cumprod[timesteps - 1 - x * self.skip_steps]

        sigmas = ((1 - alphas_cumprod_valid) / alphas_cumprod_valid) ** 0.5
        self.set_sigmas(sigmas)

    def set_sigmas(self, sigmas):
        self.register_buffer('sigmas', sigmas)
        self.register_buffer('log_sigmas', sigmas.log())

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        log_sigma = sigma.log()
        dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
        return dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)

    def sigma(self, timestep):
        t = torch.clamp(((timestep - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1))
        low_idx = t.floor().long()
        high_idx = t.ceil().long()
        w = t.frac()
        log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
        return log_sigma.exp()

    def percent_to_sigma(self, percent):
69
        if percent <= 0.0:
70
            return 999999999.9
71
        if percent >= 1.0:
72
            return 0.0
73
        percent = 1.0 - percent
74
        return self.sigma(torch.tensor(percent * 999.0)).item()
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99


def rescale_zero_terminal_snr_sigmas(sigmas):
    alphas_cumprod = 1 / ((sigmas * sigmas) + 1)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= (alphas_bar_sqrt_T)

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas_bar[-1] = 4.8973451890853435e-08
    return ((1 - alphas_bar) / alphas_bar) ** 0.5

class ModelSamplingDiscrete:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
comfyanonymous's avatar
comfyanonymous committed
100
                              "sampling": (["eps", "v_prediction", "lcm"],),
101
102
103
104
105
106
107
108
109
110
111
                              "zsnr": ("BOOLEAN", {"default": False}),
                              }}

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, sampling, zsnr):
        m = model.clone()

comfyanonymous's avatar
comfyanonymous committed
112
        sampling_base = comfy.model_sampling.ModelSamplingDiscrete
113
114
115
116
        if sampling == "eps":
            sampling_type = comfy.model_sampling.EPS
        elif sampling == "v_prediction":
            sampling_type = comfy.model_sampling.V_PREDICTION
comfyanonymous's avatar
comfyanonymous committed
117
118
119
        elif sampling == "lcm":
            sampling_type = LCM
            sampling_base = ModelSamplingDiscreteLCM
120

comfyanonymous's avatar
comfyanonymous committed
121
        class ModelSamplingAdvanced(sampling_base, sampling_type):
122
123
124
125
126
            pass

        model_sampling = ModelSamplingAdvanced()
        if zsnr:
            model_sampling.set_sigmas(rescale_zero_terminal_snr_sigmas(model_sampling.sigmas))
comfyanonymous's avatar
comfyanonymous committed
127

128
129
130
        m.add_object_patch("model_sampling", model_sampling)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
class ModelSamplingContinuousEDM:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "sampling": (["v_prediction", "eps"],),
                              "sigma_max": ("FLOAT", {"default": 120.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
                              "sigma_min": ("FLOAT", {"default": 0.002, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
                              }}

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, sampling, sigma_max, sigma_min):
        m = model.clone()

        if sampling == "eps":
            sampling_type = comfy.model_sampling.EPS
        elif sampling == "v_prediction":
            sampling_type = comfy.model_sampling.V_PREDICTION

        class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingContinuousEDM, sampling_type):
            pass

        model_sampling = ModelSamplingAdvanced()
        model_sampling.set_sigma_range(sigma_min, sigma_max)
        m.add_object_patch("model_sampling", model_sampling)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
class RescaleCFG:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, multiplier):
        def rescale_cfg(args):
            cond = args["cond"]
            uncond = args["uncond"]
            cond_scale = args["cond_scale"]
            sigma = args["sigma"]
178
            sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1))
comfyanonymous's avatar
comfyanonymous committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
            x_orig = args["input"]

            #rescale cfg has to be done on v-pred model output
            x = x_orig / (sigma * sigma + 1.0)
            cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
            uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)

            #rescalecfg
            x_cfg = uncond + cond_scale * (cond - uncond)
            ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True)
            ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True)

            x_rescaled = x_cfg * (ro_pos / ro_cfg)
            x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg

            return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5)

        m = model.clone()
        m.set_model_sampler_cfg_function(rescale_cfg)
        return (m, )

200
201
NODE_CLASS_MAPPINGS = {
    "ModelSamplingDiscrete": ModelSamplingDiscrete,
comfyanonymous's avatar
comfyanonymous committed
202
    "ModelSamplingContinuousEDM": ModelSamplingContinuousEDM,
comfyanonymous's avatar
comfyanonymous committed
203
    "RescaleCFG": RescaleCFG,
204
}