model.py 24 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
8
# pytorch_diffusion + derived encoder decoder
import math
import torch
import torch.nn as nn
import numpy as np
from einops import rearrange
from typing import Optional, Any

9
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
10
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
11
ops = comfy.ops.disable_weight_init
comfyanonymous's avatar
comfyanonymous committed
12

13
if model_management.xformers_enabled_vae():
comfyanonymous's avatar
comfyanonymous committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    import xformers
    import xformers.ops

def get_timestep_embedding(timesteps, embedding_dim):
    """
    This matches the implementation in Denoising Diffusion Probabilistic Models:
    From Fairseq.
    Build sinusoidal embeddings.
    This matches the implementation in tensor2tensor, but differs slightly
    from the description in Section 3.5 of "Attention Is All You Need".
    """
    assert len(timesteps.shape) == 1

    half_dim = embedding_dim // 2
    emb = math.log(10000) / (half_dim - 1)
    emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
    emb = emb.to(device=timesteps.device)
    emb = timesteps.float()[:, None] * emb[None, :]
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
    if embedding_dim % 2 == 1:  # zero pad
        emb = torch.nn.functional.pad(emb, (0,1,0,0))
    return emb


def nonlinearity(x):
    # swish
    return x*torch.sigmoid(x)


def Normalize(in_channels, num_groups=32):
    return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)


class Upsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
comfyanonymous's avatar
comfyanonymous committed
52
            self.conv = ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
53
54
55
56
57
58
                                        in_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x):
59
60
61
62
63
64
65
66
67
68
69
70
        try:
            x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
        except: #operation not implemented for bf16
            b, c, h, w = x.shape
            out = torch.empty((b, c, h*2, w*2), dtype=x.dtype, layout=x.layout, device=x.device)
            split = 8
            l = out.shape[1] // split
            for i in range(0, out.shape[1], l):
                out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=2.0, mode="nearest").to(x.dtype)
            del x
            x = out

comfyanonymous's avatar
comfyanonymous committed
71
72
73
74
75
76
77
78
79
80
81
        if self.with_conv:
            x = self.conv(x)
        return x


class Downsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
            # no asymmetric padding in torch conv, must do it ourselves
comfyanonymous's avatar
comfyanonymous committed
82
            self.conv = ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
83
84
85
86
87
                                        in_channels,
                                        kernel_size=3,
                                        stride=2,
                                        padding=0)

88
    def forward(self, x):
comfyanonymous's avatar
comfyanonymous committed
89
        if self.with_conv:
90
91
            pad = (0,1,0,1)
            x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
comfyanonymous's avatar
comfyanonymous committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
            x = self.conv(x)
        else:
            x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
        return x


class ResnetBlock(nn.Module):
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
                 dropout, temb_channels=512):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

107
        self.swish = torch.nn.SiLU(inplace=True)
comfyanonymous's avatar
comfyanonymous committed
108
        self.norm1 = Normalize(in_channels)
comfyanonymous's avatar
comfyanonymous committed
109
        self.conv1 = ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
110
111
112
113
114
                                     out_channels,
                                     kernel_size=3,
                                     stride=1,
                                     padding=1)
        if temb_channels > 0:
comfyanonymous's avatar
comfyanonymous committed
115
            self.temb_proj = ops.Linear(temb_channels,
comfyanonymous's avatar
comfyanonymous committed
116
117
                                             out_channels)
        self.norm2 = Normalize(out_channels)
118
        self.dropout = torch.nn.Dropout(dropout, inplace=True)
comfyanonymous's avatar
comfyanonymous committed
119
        self.conv2 = ops.Conv2d(out_channels,
comfyanonymous's avatar
comfyanonymous committed
120
121
122
123
124
125
                                     out_channels,
                                     kernel_size=3,
                                     stride=1,
                                     padding=1)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
comfyanonymous's avatar
comfyanonymous committed
126
                self.conv_shortcut = ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
127
128
129
130
131
                                                     out_channels,
                                                     kernel_size=3,
                                                     stride=1,
                                                     padding=1)
            else:
comfyanonymous's avatar
comfyanonymous committed
132
                self.nin_shortcut = ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
133
134
135
136
137
138
139
140
                                                    out_channels,
                                                    kernel_size=1,
                                                    stride=1,
                                                    padding=0)

    def forward(self, x, temb):
        h = x
        h = self.norm1(h)
141
        h = self.swish(h)
comfyanonymous's avatar
comfyanonymous committed
142
143
144
        h = self.conv1(h)

        if temb is not None:
145
            h = h + self.temb_proj(self.swish(temb))[:,:,None,None]
comfyanonymous's avatar
comfyanonymous committed
146
147

        h = self.norm2(h)
148
        h = self.swish(h)
comfyanonymous's avatar
comfyanonymous committed
149
150
151
152
153
154
155
156
157
158
159
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x+h

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def slice_attention(q, k, v):
    r1 = torch.zeros_like(k, device=q.device)
    scale = (int(q.shape[-1])**(-0.5))

    mem_free_total = model_management.get_free_memory(q.device)

    gb = 1024 ** 3
    tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
    modifier = 3 if q.element_size() == 2 else 2.5
    mem_required = tensor_size * modifier
    steps = 1

    if mem_required > mem_free_total:
        steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))

    while True:
        try:
            slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
            for i in range(0, q.shape[1], slice_size):
                end = i + slice_size
                s1 = torch.bmm(q[:, i:end], k) * scale

                s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1)
                del s1

                r1[:, :, i:end] = torch.bmm(v, s2)
                del s2
            break
        except model_management.OOM_EXCEPTION as e:
189
            model_management.soft_empty_cache(True)
190
191
192
193
194
195
            steps *= 2
            if steps > 128:
                raise e
            print("out of memory error, increasing steps and trying again", steps)

    return r1
comfyanonymous's avatar
comfyanonymous committed
196

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
def normal_attention(q, k, v):
    # compute attention
    b,c,h,w = q.shape

    q = q.reshape(b,c,h*w)
    q = q.permute(0,2,1)   # b,hw,c
    k = k.reshape(b,c,h*w) # b,c,hw
    v = v.reshape(b,c,h*w)

    r1 = slice_attention(q, k, v)
    h_ = r1.reshape(b,c,h,w)
    del r1
    return h_

def xformers_attention(q, k, v):
    # compute attention
    B, C, H, W = q.shape
    q, k, v = map(
        lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
        (q, k, v),
    )

    try:
        out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
        out = out.transpose(1, 2).reshape(B, C, H, W)
    except NotImplementedError as e:
        out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
    return out

def pytorch_attention(q, k, v):
    # compute attention
    B, C, H, W = q.shape
    q, k, v = map(
        lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
        (q, k, v),
    )

    try:
        out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
        out = out.transpose(2, 3).reshape(B, C, H, W)
    except model_management.OOM_EXCEPTION as e:
        print("scaled_dot_product_attention OOMed: switched to slice attention")
        out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
    return out


comfyanonymous's avatar
comfyanonymous committed
243
244
245
246
247
248
class AttnBlock(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
comfyanonymous's avatar
comfyanonymous committed
249
        self.q = ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
250
251
252
253
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
comfyanonymous's avatar
comfyanonymous committed
254
        self.k = ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
255
256
257
258
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
comfyanonymous's avatar
comfyanonymous committed
259
        self.v = ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
260
261
262
263
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
comfyanonymous's avatar
comfyanonymous committed
264
        self.proj_out = ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
265
266
267
268
269
                                        in_channels,
                                        kernel_size=1,
                                        stride=1,
                                        padding=0)

270
271
272
273
274
275
276
277
278
279
        if model_management.xformers_enabled_vae():
            print("Using xformers attention in VAE")
            self.optimized_attention = xformers_attention
        elif model_management.pytorch_attention_enabled():
            print("Using pytorch attention in VAE")
            self.optimized_attention = pytorch_attention
        else:
            print("Using split attention in VAE")
            self.optimized_attention = normal_attention

comfyanonymous's avatar
comfyanonymous committed
280
281
282
283
284
285
286
    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

287
        h_ = self.optimized_attention(q, k, v)
288

comfyanonymous's avatar
comfyanonymous committed
289
290
291
292
293
294
        h_ = self.proj_out(h_)

        return x+h_


def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
295
    return AttnBlock(in_channels)
comfyanonymous's avatar
comfyanonymous committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315


class Model(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
                 resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = self.ch*4
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        self.use_timestep = use_timestep
        if self.use_timestep:
            # timestep embedding
            self.temb = nn.Module()
            self.temb.dense = nn.ModuleList([
comfyanonymous's avatar
comfyanonymous committed
316
                ops.Linear(self.ch,
comfyanonymous's avatar
comfyanonymous committed
317
                                self.temb_ch),
comfyanonymous's avatar
comfyanonymous committed
318
                ops.Linear(self.temb_ch,
comfyanonymous's avatar
comfyanonymous committed
319
320
321
322
                                self.temb_ch),
            ])

        # downsampling
comfyanonymous's avatar
comfyanonymous committed
323
        self.conv_in = ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
                                       self.ch,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        curr_res = resolution
        in_ch_mult = (1,)+tuple(ch_mult)
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch*in_ch_mult[i_level]
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions-1:
                down.downsample = Downsample(block_in, resamp_with_conv)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch*ch_mult[i_level]
            skip_in = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks+1):
                if i_block == self.num_res_blocks:
                    skip_in = ch*in_ch_mult[i_level]
                block.append(ResnetBlock(in_channels=block_in+skip_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in, resamp_with_conv)
                curr_res = curr_res * 2
            self.up.insert(0, up) # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
comfyanonymous's avatar
comfyanonymous committed
392
        self.conv_out = ops.Conv2d(block_in,
comfyanonymous's avatar
comfyanonymous committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
                                        out_ch,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x, t=None, context=None):
        #assert x.shape[2] == x.shape[3] == self.resolution
        if context is not None:
            # assume aligned context, cat along channel axis
            x = torch.cat((x, context), dim=1)
        if self.use_timestep:
            # timestep embedding
            assert t is not None
            temb = get_timestep_embedding(t, self.ch)
            temb = self.temb.dense[0](temb)
            temb = nonlinearity(temb)
            temb = self.temb.dense[1](temb)
        else:
            temb = None

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions-1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks+1):
                h = self.up[i_level].block[i_block](
                    torch.cat([h, hs.pop()], dim=1), temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h

    def get_last_layer(self):
        return self.conv_out.weight


class Encoder(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
                 resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
                 **ignore_kwargs):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        # downsampling
comfyanonymous's avatar
comfyanonymous committed
465
        self.conv_in = ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
                                       self.ch,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        curr_res = resolution
        in_ch_mult = (1,)+tuple(ch_mult)
        self.in_ch_mult = in_ch_mult
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch*in_ch_mult[i_level]
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions-1:
                down.downsample = Downsample(block_in, resamp_with_conv)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # end
        self.norm_out = Normalize(block_in)
comfyanonymous's avatar
comfyanonymous committed
510
        self.conv_out = ops.Conv2d(block_in,
comfyanonymous's avatar
comfyanonymous committed
511
512
513
514
515
516
517
518
519
                                        2*z_channels if double_z else z_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x):
        # timestep embedding
        temb = None
        # downsampling
520
        h = self.conv_in(x)
comfyanonymous's avatar
comfyanonymous committed
521
522
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
523
                h = self.down[i_level].block[i_block](h, temb)
comfyanonymous's avatar
comfyanonymous committed
524
525
526
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
            if i_level != self.num_resolutions-1:
527
                h = self.down[i_level].downsample(h)
comfyanonymous's avatar
comfyanonymous committed
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

        # middle
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h


class Decoder(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
                 resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
comfyanonymous's avatar
comfyanonymous committed
545
                 conv_out_op=ops.Conv2d,
comfyanonymous's avatar
comfyanonymous committed
546
547
548
                 resnet_op=ResnetBlock,
                 attn_op=AttnBlock,
                **ignorekwargs):
comfyanonymous's avatar
comfyanonymous committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels
        self.give_pre_end = give_pre_end
        self.tanh_out = tanh_out

        # compute in_ch_mult, block_in and curr_res at lowest res
        in_ch_mult = (1,)+tuple(ch_mult)
        block_in = ch*ch_mult[self.num_resolutions-1]
        curr_res = resolution // 2**(self.num_resolutions-1)
        self.z_shape = (1,z_channels,curr_res,curr_res)
        print("Working with z of shape {} = {} dimensions.".format(
            self.z_shape, np.prod(self.z_shape)))

        # z to block_in
comfyanonymous's avatar
comfyanonymous committed
569
        self.conv_in = ops.Conv2d(z_channels,
comfyanonymous's avatar
comfyanonymous committed
570
571
572
573
574
575
576
                                       block_in,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        # middle
        self.mid = nn.Module()
comfyanonymous's avatar
comfyanonymous committed
577
        self.mid.block_1 = resnet_op(in_channels=block_in,
comfyanonymous's avatar
comfyanonymous committed
578
579
580
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
comfyanonymous's avatar
comfyanonymous committed
581
582
        self.mid.attn_1 = attn_op(block_in)
        self.mid.block_2 = resnet_op(in_channels=block_in,
comfyanonymous's avatar
comfyanonymous committed
583
584
585
586
587
588
589
590
591
592
593
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks+1):
comfyanonymous's avatar
comfyanonymous committed
594
                block.append(resnet_op(in_channels=block_in,
comfyanonymous's avatar
comfyanonymous committed
595
596
597
598
599
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
comfyanonymous's avatar
comfyanonymous committed
600
                    attn.append(attn_op(block_in))
comfyanonymous's avatar
comfyanonymous committed
601
602
603
604
605
606
607
608
609
610
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in, resamp_with_conv)
                curr_res = curr_res * 2
            self.up.insert(0, up) # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
comfyanonymous's avatar
comfyanonymous committed
611
        self.conv_out = conv_out_op(block_in,
comfyanonymous's avatar
comfyanonymous committed
612
613
614
615
616
                                        out_ch,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

comfyanonymous's avatar
comfyanonymous committed
617
    def forward(self, z, **kwargs):
comfyanonymous's avatar
comfyanonymous committed
618
619
620
621
622
623
624
625
626
627
        #assert z.shape[1:] == self.z_shape[1:]
        self.last_z_shape = z.shape

        # timestep embedding
        temb = None

        # z to block_in
        h = self.conv_in(z)

        # middle
comfyanonymous's avatar
comfyanonymous committed
628
629
630
        h = self.mid.block_1(h, temb, **kwargs)
        h = self.mid.attn_1(h, **kwargs)
        h = self.mid.block_2(h, temb, **kwargs)
comfyanonymous's avatar
comfyanonymous committed
631
632
633
634

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks+1):
comfyanonymous's avatar
comfyanonymous committed
635
                h = self.up[i_level].block[i_block](h, temb, **kwargs)
comfyanonymous's avatar
comfyanonymous committed
636
                if len(self.up[i_level].attn) > 0:
comfyanonymous's avatar
comfyanonymous committed
637
                    h = self.up[i_level].attn[i_block](h, **kwargs)
comfyanonymous's avatar
comfyanonymous committed
638
639
640
641
642
643
644
645
646
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        if self.give_pre_end:
            return h

        h = self.norm_out(h)
        h = nonlinearity(h)
comfyanonymous's avatar
comfyanonymous committed
647
        h = self.conv_out(h, **kwargs)
comfyanonymous's avatar
comfyanonymous committed
648
649
650
        if self.tanh_out:
            h = torch.tanh(h)
        return h