model.py 27.8 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
8
# pytorch_diffusion + derived encoder decoder
import math
import torch
import torch.nn as nn
import numpy as np
from einops import rearrange
from typing import Optional, Any

comfyanonymous's avatar
comfyanonymous committed
9
from ..attention import MemoryEfficientCrossAttention
10
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
11
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
12

13
if model_management.xformers_enabled_vae():
comfyanonymous's avatar
comfyanonymous committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    import xformers
    import xformers.ops

def get_timestep_embedding(timesteps, embedding_dim):
    """
    This matches the implementation in Denoising Diffusion Probabilistic Models:
    From Fairseq.
    Build sinusoidal embeddings.
    This matches the implementation in tensor2tensor, but differs slightly
    from the description in Section 3.5 of "Attention Is All You Need".
    """
    assert len(timesteps.shape) == 1

    half_dim = embedding_dim // 2
    emb = math.log(10000) / (half_dim - 1)
    emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
    emb = emb.to(device=timesteps.device)
    emb = timesteps.float()[:, None] * emb[None, :]
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
    if embedding_dim % 2 == 1:  # zero pad
        emb = torch.nn.functional.pad(emb, (0,1,0,0))
    return emb


def nonlinearity(x):
    # swish
    return x*torch.sigmoid(x)


def Normalize(in_channels, num_groups=32):
    return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)


class Upsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
comfyanonymous's avatar
comfyanonymous committed
52
            self.conv = comfy.ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
                                        in_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x):
        x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
        if self.with_conv:
            x = self.conv(x)
        return x


class Downsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
            # no asymmetric padding in torch conv, must do it ourselves
comfyanonymous's avatar
comfyanonymous committed
71
            self.conv = comfy.ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
72
73
74
75
76
                                        in_channels,
                                        kernel_size=3,
                                        stride=2,
                                        padding=0)

comfyanonymous's avatar
comfyanonymous committed
77
    def forward(self, x, already_padded=False):
comfyanonymous's avatar
comfyanonymous committed
78
        if self.with_conv:
comfyanonymous's avatar
comfyanonymous committed
79
80
81
            if not already_padded:
                pad = (0,1,0,1)
                x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
comfyanonymous's avatar
comfyanonymous committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
            x = self.conv(x)
        else:
            x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
        return x


class ResnetBlock(nn.Module):
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
                 dropout, temb_channels=512):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

97
        self.swish = torch.nn.SiLU(inplace=True)
comfyanonymous's avatar
comfyanonymous committed
98
        self.norm1 = Normalize(in_channels)
comfyanonymous's avatar
comfyanonymous committed
99
        self.conv1 = comfy.ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
100
101
102
103
104
                                     out_channels,
                                     kernel_size=3,
                                     stride=1,
                                     padding=1)
        if temb_channels > 0:
comfyanonymous's avatar
comfyanonymous committed
105
            self.temb_proj = comfy.ops.Linear(temb_channels,
comfyanonymous's avatar
comfyanonymous committed
106
107
                                             out_channels)
        self.norm2 = Normalize(out_channels)
108
        self.dropout = torch.nn.Dropout(dropout, inplace=True)
comfyanonymous's avatar
comfyanonymous committed
109
        self.conv2 = comfy.ops.Conv2d(out_channels,
comfyanonymous's avatar
comfyanonymous committed
110
111
112
113
114
115
                                     out_channels,
                                     kernel_size=3,
                                     stride=1,
                                     padding=1)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
comfyanonymous's avatar
comfyanonymous committed
116
                self.conv_shortcut = comfy.ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
117
118
119
120
121
                                                     out_channels,
                                                     kernel_size=3,
                                                     stride=1,
                                                     padding=1)
            else:
comfyanonymous's avatar
comfyanonymous committed
122
                self.nin_shortcut = comfy.ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
123
124
125
126
127
128
129
130
                                                    out_channels,
                                                    kernel_size=1,
                                                    stride=1,
                                                    padding=0)

    def forward(self, x, temb):
        h = x
        h = self.norm1(h)
131
        h = self.swish(h)
comfyanonymous's avatar
comfyanonymous committed
132
133
134
        h = self.conv1(h)

        if temb is not None:
135
            h = h + self.temb_proj(self.swish(temb))[:,:,None,None]
comfyanonymous's avatar
comfyanonymous committed
136
137

        h = self.norm2(h)
138
        h = self.swish(h)
comfyanonymous's avatar
comfyanonymous committed
139
140
141
142
143
144
145
146
147
148
149
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x+h

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def slice_attention(q, k, v):
    r1 = torch.zeros_like(k, device=q.device)
    scale = (int(q.shape[-1])**(-0.5))

    mem_free_total = model_management.get_free_memory(q.device)

    gb = 1024 ** 3
    tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
    modifier = 3 if q.element_size() == 2 else 2.5
    mem_required = tensor_size * modifier
    steps = 1

    if mem_required > mem_free_total:
        steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))

    while True:
        try:
            slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
            for i in range(0, q.shape[1], slice_size):
                end = i + slice_size
                s1 = torch.bmm(q[:, i:end], k) * scale

                s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1)
                del s1

                r1[:, :, i:end] = torch.bmm(v, s2)
                del s2
            break
        except model_management.OOM_EXCEPTION as e:
            steps *= 2
            if steps > 128:
                raise e
            print("out of memory error, increasing steps and trying again", steps)

    return r1
comfyanonymous's avatar
comfyanonymous committed
185
186
187
188
189
190
191

class AttnBlock(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
comfyanonymous's avatar
comfyanonymous committed
192
        self.q = comfy.ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
193
194
195
196
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
comfyanonymous's avatar
comfyanonymous committed
197
        self.k = comfy.ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
198
199
200
201
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
comfyanonymous's avatar
comfyanonymous committed
202
        self.v = comfy.ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
203
204
205
206
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
comfyanonymous's avatar
comfyanonymous committed
207
        self.proj_out = comfy.ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
                                        in_channels,
                                        kernel_size=1,
                                        stride=1,
                                        padding=0)

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b,c,h,w = q.shape
222

comfyanonymous's avatar
comfyanonymous committed
223
224
225
226
        q = q.reshape(b,c,h*w)
        q = q.permute(0,2,1)   # b,hw,c
        k = k.reshape(b,c,h*w) # b,c,hw
        v = v.reshape(b,c,h*w)
227

228
        r1 = slice_attention(q, k, v)
229
230
        h_ = r1.reshape(b,c,h,w)
        del r1
comfyanonymous's avatar
comfyanonymous committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        h_ = self.proj_out(h_)

        return x+h_

class MemoryEfficientAttnBlock(nn.Module):
    """
        Uses xformers efficient implementation,
        see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
        Note: this is a single-head self-attention operation
    """
    #
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
comfyanonymous's avatar
comfyanonymous committed
247
        self.q = comfy.ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
248
249
250
251
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
comfyanonymous's avatar
comfyanonymous committed
252
        self.k = comfy.ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
253
254
255
256
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
comfyanonymous's avatar
comfyanonymous committed
257
        self.v = comfy.ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
258
259
260
261
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
comfyanonymous's avatar
comfyanonymous committed
262
        self.proj_out = comfy.ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
                                        in_channels,
                                        kernel_size=1,
                                        stride=1,
                                        padding=0)
        self.attention_op: Optional[Any] = None

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        B, C, H, W = q.shape
        q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))

        q, k, v = map(
            lambda t: t.unsqueeze(3)
            .reshape(B, t.shape[1], 1, C)
            .permute(0, 2, 1, 3)
            .reshape(B * 1, t.shape[1], C)
            .contiguous(),
            (q, k, v),
        )
        out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)

        out = (
            out.unsqueeze(0)
            .reshape(B, 1, out.shape[1], C)
            .permute(0, 2, 1, 3)
            .reshape(B, out.shape[1], C)
        )
        out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
        out = self.proj_out(out)
        return x+out

300
301
302
303
304
305
class MemoryEfficientAttnBlockPytorch(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
comfyanonymous's avatar
comfyanonymous committed
306
        self.q = comfy.ops.Conv2d(in_channels,
307
308
309
310
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
comfyanonymous's avatar
comfyanonymous committed
311
        self.k = comfy.ops.Conv2d(in_channels,
312
313
314
315
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
comfyanonymous's avatar
comfyanonymous committed
316
        self.v = comfy.ops.Conv2d(in_channels,
317
318
319
320
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
comfyanonymous's avatar
comfyanonymous committed
321
        self.proj_out = comfy.ops.Conv2d(in_channels,
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
                                        in_channels,
                                        kernel_size=1,
                                        stride=1,
                                        padding=0)
        self.attention_op: Optional[Any] = None

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        B, C, H, W = q.shape
        q, k, v = map(
338
            lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
339
340
341
            (q, k, v),
        )

342
343
344
345
346
347
348
        try:
            out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
            out = out.transpose(2, 3).reshape(B, C, H, W)
        except model_management.OOM_EXCEPTION as e:
            print("scaled_dot_product_attention OOMed: switched to slice attention")
            out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)

349
350
        out = self.proj_out(out)
        return x+out
comfyanonymous's avatar
comfyanonymous committed
351
352
353
354
355
356
357
358
359
360
361
362

class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
    def forward(self, x, context=None, mask=None):
        b, c, h, w = x.shape
        x = rearrange(x, 'b c h w -> b (h w) c')
        out = super().forward(x, context=context, mask=mask)
        out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
        return x + out


def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
    assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
363
    if model_management.xformers_enabled_vae() and attn_type == "vanilla":
comfyanonymous's avatar
comfyanonymous committed
364
        attn_type = "vanilla-xformers"
365
366
    if model_management.pytorch_attention_enabled() and attn_type == "vanilla":
        attn_type = "vanilla-pytorch"
comfyanonymous's avatar
comfyanonymous committed
367
368
369
370
371
372
373
    print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
    if attn_type == "vanilla":
        assert attn_kwargs is None
        return AttnBlock(in_channels)
    elif attn_type == "vanilla-xformers":
        print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
        return MemoryEfficientAttnBlock(in_channels)
374
375
    elif attn_type == "vanilla-pytorch":
        return MemoryEfficientAttnBlockPytorch(in_channels)
comfyanonymous's avatar
comfyanonymous committed
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    elif type == "memory-efficient-cross-attn":
        attn_kwargs["query_dim"] = in_channels
        return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
    elif attn_type == "none":
        return nn.Identity(in_channels)
    else:
        raise NotImplementedError()


class Model(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
                 resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = self.ch*4
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        self.use_timestep = use_timestep
        if self.use_timestep:
            # timestep embedding
            self.temb = nn.Module()
            self.temb.dense = nn.ModuleList([
comfyanonymous's avatar
comfyanonymous committed
403
                comfy.ops.Linear(self.ch,
comfyanonymous's avatar
comfyanonymous committed
404
                                self.temb_ch),
comfyanonymous's avatar
comfyanonymous committed
405
                comfy.ops.Linear(self.temb_ch,
comfyanonymous's avatar
comfyanonymous committed
406
407
408
409
                                self.temb_ch),
            ])

        # downsampling
comfyanonymous's avatar
comfyanonymous committed
410
        self.conv_in = comfy.ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
                                       self.ch,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        curr_res = resolution
        in_ch_mult = (1,)+tuple(ch_mult)
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch*in_ch_mult[i_level]
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions-1:
                down.downsample = Downsample(block_in, resamp_with_conv)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch*ch_mult[i_level]
            skip_in = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks+1):
                if i_block == self.num_res_blocks:
                    skip_in = ch*in_ch_mult[i_level]
                block.append(ResnetBlock(in_channels=block_in+skip_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in, resamp_with_conv)
                curr_res = curr_res * 2
            self.up.insert(0, up) # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
comfyanonymous's avatar
comfyanonymous committed
479
        self.conv_out = comfy.ops.Conv2d(block_in,
comfyanonymous's avatar
comfyanonymous committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
                                        out_ch,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x, t=None, context=None):
        #assert x.shape[2] == x.shape[3] == self.resolution
        if context is not None:
            # assume aligned context, cat along channel axis
            x = torch.cat((x, context), dim=1)
        if self.use_timestep:
            # timestep embedding
            assert t is not None
            temb = get_timestep_embedding(t, self.ch)
            temb = self.temb.dense[0](temb)
            temb = nonlinearity(temb)
            temb = self.temb.dense[1](temb)
        else:
            temb = None

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions-1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks+1):
                h = self.up[i_level].block[i_block](
                    torch.cat([h, hs.pop()], dim=1), temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h

    def get_last_layer(self):
        return self.conv_out.weight


class Encoder(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
                 resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
                 **ignore_kwargs):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        # downsampling
comfyanonymous's avatar
comfyanonymous committed
552
        self.conv_in = comfy.ops.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
                                       self.ch,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        curr_res = resolution
        in_ch_mult = (1,)+tuple(ch_mult)
        self.in_ch_mult = in_ch_mult
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch*in_ch_mult[i_level]
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions-1:
                down.downsample = Downsample(block_in, resamp_with_conv)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # end
        self.norm_out = Normalize(block_in)
comfyanonymous's avatar
comfyanonymous committed
597
        self.conv_out = comfy.ops.Conv2d(block_in,
comfyanonymous's avatar
comfyanonymous committed
598
599
600
601
602
603
604
605
                                        2*z_channels if double_z else z_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x):
        # timestep embedding
        temb = None
comfyanonymous's avatar
comfyanonymous committed
606
607
608
        pad = (0,1,0,1)
        x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
        already_padded = True
comfyanonymous's avatar
comfyanonymous committed
609
        # downsampling
610
        h = self.conv_in(x)
comfyanonymous's avatar
comfyanonymous committed
611
612
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
613
                h = self.down[i_level].block[i_block](h, temb)
comfyanonymous's avatar
comfyanonymous committed
614
615
616
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
            if i_level != self.num_resolutions-1:
617
                h = self.down[i_level].downsample(h, already_padded)
comfyanonymous's avatar
comfyanonymous committed
618
                already_padded = False
comfyanonymous's avatar
comfyanonymous committed
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

        # middle
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h


class Decoder(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
                 resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
                 attn_type="vanilla", **ignorekwargs):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels
        self.give_pre_end = give_pre_end
        self.tanh_out = tanh_out

        # compute in_ch_mult, block_in and curr_res at lowest res
        in_ch_mult = (1,)+tuple(ch_mult)
        block_in = ch*ch_mult[self.num_resolutions-1]
        curr_res = resolution // 2**(self.num_resolutions-1)
        self.z_shape = (1,z_channels,curr_res,curr_res)
        print("Working with z of shape {} = {} dimensions.".format(
            self.z_shape, np.prod(self.z_shape)))

        # z to block_in
comfyanonymous's avatar
comfyanonymous committed
657
        self.conv_in = comfy.ops.Conv2d(z_channels,
comfyanonymous's avatar
comfyanonymous committed
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
                                       block_in,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks+1):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in, resamp_with_conv)
                curr_res = curr_res * 2
            self.up.insert(0, up) # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
comfyanonymous's avatar
comfyanonymous committed
699
        self.conv_out = comfy.ops.Conv2d(block_in,
comfyanonymous's avatar
comfyanonymous committed
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
                                        out_ch,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, z):
        #assert z.shape[1:] == self.z_shape[1:]
        self.last_z_shape = z.shape

        # timestep embedding
        temb = None

        # z to block_in
        h = self.conv_in(z)

        # middle
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks+1):
                h = self.up[i_level].block[i_block](h, temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        if self.give_pre_end:
            return h

        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        if self.tanh_out:
            h = torch.tanh(h)
        return h