utils.py 19 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
comfyanonymous's avatar
comfyanonymous committed
2
import math
3
import struct
4
import comfy.checkpoint_pickle
5
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
6
import numpy as np
7
from PIL import Image
8
import logging
comfyanonymous's avatar
comfyanonymous committed
9

comfyanonymous's avatar
comfyanonymous committed
10
11
12
def load_torch_file(ckpt, safe_load=False, device=None):
    if device is None:
        device = torch.device("cpu")
13
    if ckpt.lower().endswith(".safetensors"):
comfyanonymous's avatar
comfyanonymous committed
14
        sd = safetensors.torch.load_file(ckpt, device=device.type)
15
    else:
16
17
        if safe_load:
            if not 'weights_only' in torch.load.__code__.co_varnames:
18
                logging.warning("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.")
19
                safe_load = False
20
        if safe_load:
comfyanonymous's avatar
comfyanonymous committed
21
            pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
22
        else:
comfyanonymous's avatar
comfyanonymous committed
23
            pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
24
        if "global_step" in pl_sd:
comfyanonymous's avatar
comfyanonymous committed
25
            logging.debug(f"Global Step: {pl_sd['global_step']}")
26
27
28
29
30
31
        if "state_dict" in pl_sd:
            sd = pl_sd["state_dict"]
        else:
            sd = pl_sd
    return sd

32
33
34
35
36
37
def save_torch_file(sd, ckpt, metadata=None):
    if metadata is not None:
        safetensors.torch.save_file(sd, ckpt, metadata=metadata)
    else:
        safetensors.torch.save_file(sd, ckpt)

38
39
40
41
42
43
44
def calculate_parameters(sd, prefix=""):
    params = 0
    for k in sd.keys():
        if k.startswith(prefix):
            params += sd[k].nelement()
    return params

45
46
47
48
49
50
def state_dict_key_replace(state_dict, keys_to_replace):
    for x in keys_to_replace:
        if x in state_dict:
            state_dict[keys_to_replace[x]] = state_dict.pop(x)
    return state_dict

comfyanonymous's avatar
comfyanonymous committed
51
52
53
54
55
def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False):
    if filter_keys:
        out = {}
    else:
        out = state_dict
56
57
58
    for rp in replace_prefix:
        replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys())))
        for x in replace:
comfyanonymous's avatar
comfyanonymous committed
59
60
61
            w = state_dict.pop(x[0])
            out[x[1]] = w
    return out
62
63


64
def transformers_convert(sd, prefix_from, prefix_to, number):
comfyanonymous's avatar
comfyanonymous committed
65
    keys_to_replace = {
66
67
68
69
        "{}positional_embedding": "{}embeddings.position_embedding.weight",
        "{}token_embedding.weight": "{}embeddings.token_embedding.weight",
        "{}ln_final.weight": "{}final_layer_norm.weight",
        "{}ln_final.bias": "{}final_layer_norm.bias",
comfyanonymous's avatar
comfyanonymous committed
70
71
72
73
74
75
76
    }

    for k in keys_to_replace:
        x = k.format(prefix_from)
        if x in sd:
            sd[keys_to_replace[k].format(prefix_to)] = sd.pop(x)

77
78
79
80
81
82
83
84
85
86
87
    resblock_to_replace = {
        "ln_1": "layer_norm1",
        "ln_2": "layer_norm2",
        "mlp.c_fc": "mlp.fc1",
        "mlp.c_proj": "mlp.fc2",
        "attn.out_proj": "self_attn.out_proj",
    }

    for resblock in range(number):
        for x in resblock_to_replace:
            for y in ["weight", "bias"]:
88
89
                k = "{}transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
                k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
90
91
92
93
                if k in sd:
                    sd[k_to] = sd.pop(k)

        for y in ["weight", "bias"]:
94
            k_from = "{}transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
95
96
97
98
99
            if k_from in sd:
                weights = sd.pop(k_from)
                shape_from = weights.shape[0] // 3
                for x in range(3):
                    p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
100
                    k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
101
                    sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
102
103
104
105
106
107
108
109
110
111
112
113

    return sd

def clip_text_transformers_convert(sd, prefix_from, prefix_to):
    sd = transformers_convert(sd, prefix_from, "{}text_model.".format(prefix_to), 32)

    tp = "{}text_projection.weight".format(prefix_from)
    if tp in sd:
        sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp)

    tp = "{}text_projection".format(prefix_from)
    if tp in sd:
114
        sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp).transpose(0, 1).contiguous()
115
116
    return sd

117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
UNET_MAP_ATTENTIONS = {
    "proj_in.weight",
    "proj_in.bias",
    "proj_out.weight",
    "proj_out.bias",
    "norm.weight",
    "norm.bias",
}

TRANSFORMER_BLOCKS = {
    "norm1.weight",
    "norm1.bias",
    "norm2.weight",
    "norm2.bias",
    "norm3.weight",
    "norm3.bias",
    "attn1.to_q.weight",
    "attn1.to_k.weight",
    "attn1.to_v.weight",
    "attn1.to_out.0.weight",
    "attn1.to_out.0.bias",
    "attn2.to_q.weight",
    "attn2.to_k.weight",
    "attn2.to_v.weight",
    "attn2.to_out.0.weight",
    "attn2.to_out.0.bias",
    "ff.net.0.proj.weight",
    "ff.net.0.proj.bias",
    "ff.net.2.weight",
    "ff.net.2.bias",
}

UNET_MAP_RESNET = {
    "in_layers.2.weight": "conv1.weight",
    "in_layers.2.bias": "conv1.bias",
    "emb_layers.1.weight": "time_emb_proj.weight",
    "emb_layers.1.bias": "time_emb_proj.bias",
    "out_layers.3.weight": "conv2.weight",
    "out_layers.3.bias": "conv2.bias",
    "skip_connection.weight": "conv_shortcut.weight",
    "skip_connection.bias": "conv_shortcut.bias",
    "in_layers.0.weight": "norm1.weight",
    "in_layers.0.bias": "norm1.bias",
    "out_layers.0.weight": "norm2.weight",
    "out_layers.0.bias": "norm2.bias",
}

165
UNET_MAP_BASIC = {
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    ("label_emb.0.0.weight", "class_embedding.linear_1.weight"),
    ("label_emb.0.0.bias", "class_embedding.linear_1.bias"),
    ("label_emb.0.2.weight", "class_embedding.linear_2.weight"),
    ("label_emb.0.2.bias", "class_embedding.linear_2.bias"),
    ("label_emb.0.0.weight", "add_embedding.linear_1.weight"),
    ("label_emb.0.0.bias", "add_embedding.linear_1.bias"),
    ("label_emb.0.2.weight", "add_embedding.linear_2.weight"),
    ("label_emb.0.2.bias", "add_embedding.linear_2.bias"),
    ("input_blocks.0.0.weight", "conv_in.weight"),
    ("input_blocks.0.0.bias", "conv_in.bias"),
    ("out.0.weight", "conv_norm_out.weight"),
    ("out.0.bias", "conv_norm_out.bias"),
    ("out.2.weight", "conv_out.weight"),
    ("out.2.bias", "conv_out.bias"),
    ("time_embed.0.weight", "time_embedding.linear_1.weight"),
    ("time_embed.0.bias", "time_embedding.linear_1.bias"),
    ("time_embed.2.weight", "time_embedding.linear_2.weight"),
    ("time_embed.2.bias", "time_embedding.linear_2.bias")
184
185
}

186
def unet_to_diffusers(unet_config):
comfyanonymous's avatar
comfyanonymous committed
187
188
    if "num_res_blocks" not in unet_config:
        return {}
189
190
    num_res_blocks = unet_config["num_res_blocks"]
    channel_mult = unet_config["channel_mult"]
191
192
    transformer_depth = unet_config["transformer_depth"][:]
    transformer_depth_output = unet_config["transformer_depth_output"][:]
193
    num_blocks = len(channel_mult)
194
195

    transformers_mid = unet_config.get("transformer_depth_middle", None)
196
197
198
199
200
201
202

    diffusers_unet_map = {}
    for x in range(num_blocks):
        n = 1 + (num_res_blocks[x] + 1) * x
        for i in range(num_res_blocks[x]):
            for b in UNET_MAP_RESNET:
                diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
203
204
            num_transformers = transformer_depth.pop(0)
            if num_transformers > 0:
205
206
                for b in UNET_MAP_ATTENTIONS:
                    diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b)
207
                for t in range(num_transformers):
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
                    for b in TRANSFORMER_BLOCKS:
                        diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
            n += 1
        for k in ["weight", "bias"]:
            diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k)

    i = 0
    for b in UNET_MAP_ATTENTIONS:
        diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b)
    for t in range(transformers_mid):
        for b in TRANSFORMER_BLOCKS:
            diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b)

    for i, n in enumerate([0, 2]):
        for b in UNET_MAP_RESNET:
            diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)

    num_res_blocks = list(reversed(num_res_blocks))
    for x in range(num_blocks):
        n = (num_res_blocks[x] + 1) * x
        l = num_res_blocks[x] + 1
        for i in range(l):
            c = 0
            for b in UNET_MAP_RESNET:
                diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b)
            c += 1
234
235
            num_transformers = transformer_depth_output.pop()
            if num_transformers > 0:
236
237
238
                c += 1
                for b in UNET_MAP_ATTENTIONS:
                    diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b)
239
                for t in range(num_transformers):
240
241
242
243
244
245
                    for b in TRANSFORMER_BLOCKS:
                        diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
            if i == l - 1:
                for k in ["weight", "bias"]:
                    diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k)
            n += 1
246
247

    for k in UNET_MAP_BASIC:
248
        diffusers_unet_map[k[1]] = k[0]
249

250
251
    return diffusers_unet_map

252
253
254
255
256
def repeat_to_batch_size(tensor, batch_size, dim=0):
    if tensor.shape[dim] > batch_size:
        return tensor.narrow(dim, 0, batch_size)
    elif tensor.shape[dim] < batch_size:
        return tensor.repeat(dim * [1] + [math.ceil(batch_size / tensor.shape[dim])] + [1] * (len(tensor.shape) - 1 - dim)).narrow(dim, 0, batch_size)
257
258
    return tensor

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
def resize_to_batch_size(tensor, batch_size):
    in_batch_size = tensor.shape[0]
    if in_batch_size == batch_size:
        return tensor

    if batch_size <= 1:
        return tensor[:batch_size]

    output = torch.empty([batch_size] + list(tensor.shape)[1:], dtype=tensor.dtype, device=tensor.device)
    if batch_size < in_batch_size:
        scale = (in_batch_size - 1) / (batch_size - 1)
        for i in range(batch_size):
            output[i] = tensor[min(round(i * scale), in_batch_size - 1)]
    else:
        scale = in_batch_size / batch_size
        for i in range(batch_size):
            output[i] = tensor[min(math.floor((i + 0.5) * scale), in_batch_size - 1)]

    return output

279
280
281
282
283
284
def convert_sd_to(state_dict, dtype):
    keys = list(state_dict.keys())
    for k in keys:
        state_dict[k] = state_dict[k].to(dtype)
    return state_dict

285
286
287
288
289
290
291
292
def safetensors_header(safetensors_path, max_size=100*1024*1024):
    with open(safetensors_path, "rb") as f:
        header = f.read(8)
        length_of_header = struct.unpack('<Q', header)[0]
        if length_of_header > max_size:
            return None
        return f.read(length_of_header)

293
294
295
296
297
def set_attr(obj, attr, value):
    attrs = attr.split(".")
    for name in attrs[:-1]:
        obj = getattr(obj, name)
    prev = getattr(obj, attrs[-1])
298
299
300
301
302
    setattr(obj, attrs[-1], value)
    return prev

def set_attr_param(obj, attr, value):
    return set_attr(obj, attr, torch.nn.Parameter(value, requires_grad=False))
303

304
305
306
307
308
309
310
311
def copy_to_param(obj, attr, value):
    # inplace update tensor instead of replacing it
    attrs = attr.split(".")
    for name in attrs[:-1]:
        obj = getattr(obj, name)
    prev = getattr(obj, attrs[-1])
    prev.data.copy_(value)

312
313
314
315
316
317
def get_attr(obj, attr):
    attrs = attr.split(".")
    for name in attrs:
        obj = getattr(obj, name)
    return obj

318
def bislerp(samples, width, height):
BlenderNeko's avatar
BlenderNeko committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    def slerp(b1, b2, r):
        '''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC'''
        
        c = b1.shape[-1]

        #norms
        b1_norms = torch.norm(b1, dim=-1, keepdim=True)
        b2_norms = torch.norm(b2, dim=-1, keepdim=True)

        #normalize
        b1_normalized = b1 / b1_norms
        b2_normalized = b2 / b2_norms

        #zero when norms are zero
        b1_normalized[b1_norms.expand(-1,c) == 0.0] = 0.0
        b2_normalized[b2_norms.expand(-1,c) == 0.0] = 0.0

        #slerp
        dot = (b1_normalized*b2_normalized).sum(1)
        omega = torch.acos(dot)
339
        so = torch.sin(omega)
BlenderNeko's avatar
BlenderNeko committed
340
341
342
343
344
345
346
347
348
349

        #technically not mathematically correct, but more pleasing?
        res = (torch.sin((1.0-r.squeeze(1))*omega)/so).unsqueeze(1)*b1_normalized + (torch.sin(r.squeeze(1)*omega)/so).unsqueeze(1) * b2_normalized
        res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c)

        #edge cases for same or polar opposites
        res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5] 
        res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1]
        return res
    
comfyanonymous's avatar
comfyanonymous committed
350
351
    def generate_bilinear_data(length_old, length_new, device):
        coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1))
BlenderNeko's avatar
BlenderNeko committed
352
353
354
355
        coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear")
        ratios = coords_1 - coords_1.floor()
        coords_1 = coords_1.to(torch.int64)
        
comfyanonymous's avatar
comfyanonymous committed
356
        coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + 1
BlenderNeko's avatar
BlenderNeko committed
357
358
359
360
        coords_2[:,:,:,-1] -= 1
        coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear")
        coords_2 = coords_2.to(torch.int64)
        return ratios, coords_1, coords_2
361
362
363

    orig_dtype = samples.dtype
    samples = samples.float()
BlenderNeko's avatar
BlenderNeko committed
364
365
366
    n,c,h,w = samples.shape
    h_new, w_new = (height, width)
    
367
    #linear w
comfyanonymous's avatar
comfyanonymous committed
368
    ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device)
369
370
371
    coords_1 = coords_1.expand((n, c, h, -1))
    coords_2 = coords_2.expand((n, c, h, -1))
    ratios = ratios.expand((n, 1, h, -1))
BlenderNeko's avatar
BlenderNeko committed
372

comfyanonymous's avatar
comfyanonymous committed
373
374
375
    pass_1 = samples.gather(-1,coords_1).movedim(1, -1).reshape((-1,c))
    pass_2 = samples.gather(-1,coords_2).movedim(1, -1).reshape((-1,c))
    ratios = ratios.movedim(1, -1).reshape((-1,1))
BlenderNeko's avatar
BlenderNeko committed
376
377

    result = slerp(pass_1, pass_2, ratios)
comfyanonymous's avatar
comfyanonymous committed
378
    result = result.reshape(n, h, w_new, c).movedim(-1, 1)
BlenderNeko's avatar
BlenderNeko committed
379

380
    #linear h
comfyanonymous's avatar
comfyanonymous committed
381
    ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device)
382
383
384
    coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
    coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
    ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new))
BlenderNeko's avatar
BlenderNeko committed
385

comfyanonymous's avatar
comfyanonymous committed
386
387
388
    pass_1 = result.gather(-2,coords_1).movedim(1, -1).reshape((-1,c))
    pass_2 = result.gather(-2,coords_2).movedim(1, -1).reshape((-1,c))
    ratios = ratios.movedim(1, -1).reshape((-1,1))
BlenderNeko's avatar
BlenderNeko committed
389
390

    result = slerp(pass_1, pass_2, ratios)
comfyanonymous's avatar
comfyanonymous committed
391
    result = result.reshape(n, h_new, w_new, c).movedim(-1, 1)
392
    return result.to(orig_dtype)
393

394
def lanczos(samples, width, height):
comfyanonymous's avatar
comfyanonymous committed
395
    images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples]
396
    images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images]
comfyanonymous's avatar
comfyanonymous committed
397
    images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images]
398
    result = torch.stack(images)
399
    return result.to(samples.device, samples.dtype)
400

comfyanonymous's avatar
comfyanonymous committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
def common_upscale(samples, width, height, upscale_method, crop):
        if crop == "center":
            old_width = samples.shape[3]
            old_height = samples.shape[2]
            old_aspect = old_width / old_height
            new_aspect = width / height
            x = 0
            y = 0
            if old_aspect > new_aspect:
                x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
            elif old_aspect < new_aspect:
                y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
            s = samples[:,:,y:old_height-y,x:old_width-x]
        else:
            s = samples
416
417
418

        if upscale_method == "bislerp":
            return bislerp(s, width, height)
419
420
        elif upscale_method == "lanczos":
            return lanczos(s, width, height)
421
422
        else:
            return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
423

pythongosssss's avatar
pythongosssss committed
424
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
comfyanonymous's avatar
comfyanonymous committed
425
    return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
pythongosssss's avatar
pythongosssss committed
426

427
@torch.inference_mode()
428
429
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
    output = torch.empty((samples.shape[0], out_channels, round(samples.shape[2] * upscale_amount), round(samples.shape[3] * upscale_amount)), device=output_device)
430
431
    for b in range(samples.shape[0]):
        s = samples[b:b+1]
432
433
        out = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device=output_device)
        out_div = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device=output_device)
434
435
        for y in range(0, s.shape[2], tile_y - overlap):
            for x in range(0, s.shape[3], tile_x - overlap):
436
437
                x = max(0, min(s.shape[-1] - overlap, x))
                y = max(0, min(s.shape[-2] - overlap, y))
438
439
                s_in = s[:,:,y:y+tile_y,x:x+tile_x]

440
                ps = function(s_in).to(output_device)
441
                mask = torch.ones_like(ps)
442
                feather = round(overlap * upscale_amount)
443
444
445
446
447
                for t in range(feather):
                        mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
                        mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                        mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                        mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
448
449
                out[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += ps * mask
                out_div[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += mask
450
451
                if pbar is not None:
                    pbar.update(1)
452
453
454

        output[b:b+1] = out/out_div
    return output
455

456
457
458
459
PROGRESS_BAR_ENABLED = True
def set_progress_bar_enabled(enabled):
    global PROGRESS_BAR_ENABLED
    PROGRESS_BAR_ENABLED = enabled
460
461
462
463
464
465
466
467
468
469
470
471
472

PROGRESS_BAR_HOOK = None
def set_progress_bar_global_hook(function):
    global PROGRESS_BAR_HOOK
    PROGRESS_BAR_HOOK = function

class ProgressBar:
    def __init__(self, total):
        global PROGRESS_BAR_HOOK
        self.total = total
        self.current = 0
        self.hook = PROGRESS_BAR_HOOK

space-nuko's avatar
space-nuko committed
473
    def update_absolute(self, value, total=None, preview=None):
474
475
        if total is not None:
            self.total = total
476
477
478
479
        if value > self.total:
            value = self.total
        self.current = value
        if self.hook is not None:
space-nuko's avatar
space-nuko committed
480
            self.hook(self.current, self.total, preview)
481
482
483

    def update(self, value):
        self.update_absolute(self.current + value)