"src/vscode:/vscode.git/clone" did not exist on "4315a991502585bf17c6635b18c9bb514dea5199"
utils.py 18.4 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
comfyanonymous's avatar
comfyanonymous committed
2
import math
3
import struct
4
import comfy.checkpoint_pickle
5
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
6
import numpy as np
7
from PIL import Image
comfyanonymous's avatar
comfyanonymous committed
8

comfyanonymous's avatar
comfyanonymous committed
9
10
11
def load_torch_file(ckpt, safe_load=False, device=None):
    if device is None:
        device = torch.device("cpu")
12
    if ckpt.lower().endswith(".safetensors"):
comfyanonymous's avatar
comfyanonymous committed
13
        sd = safetensors.torch.load_file(ckpt, device=device.type)
14
    else:
15
16
17
18
        if safe_load:
            if not 'weights_only' in torch.load.__code__.co_varnames:
                print("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.")
                safe_load = False
19
        if safe_load:
comfyanonymous's avatar
comfyanonymous committed
20
            pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
21
        else:
comfyanonymous's avatar
comfyanonymous committed
22
            pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
23
24
25
26
27
28
29
30
        if "global_step" in pl_sd:
            print(f"Global Step: {pl_sd['global_step']}")
        if "state_dict" in pl_sd:
            sd = pl_sd["state_dict"]
        else:
            sd = pl_sd
    return sd

31
32
33
34
35
36
def save_torch_file(sd, ckpt, metadata=None):
    if metadata is not None:
        safetensors.torch.save_file(sd, ckpt, metadata=metadata)
    else:
        safetensors.torch.save_file(sd, ckpt)

37
38
39
40
41
42
43
def calculate_parameters(sd, prefix=""):
    params = 0
    for k in sd.keys():
        if k.startswith(prefix):
            params += sd[k].nelement()
    return params

44
45
46
47
48
49
def state_dict_key_replace(state_dict, keys_to_replace):
    for x in keys_to_replace:
        if x in state_dict:
            state_dict[keys_to_replace[x]] = state_dict.pop(x)
    return state_dict

comfyanonymous's avatar
comfyanonymous committed
50
51
52
53
54
def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False):
    if filter_keys:
        out = {}
    else:
        out = state_dict
55
56
57
    for rp in replace_prefix:
        replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys())))
        for x in replace:
comfyanonymous's avatar
comfyanonymous committed
58
59
60
            w = state_dict.pop(x[0])
            out[x[1]] = w
    return out
61
62


63
def transformers_convert(sd, prefix_from, prefix_to, number):
comfyanonymous's avatar
comfyanonymous committed
64
    keys_to_replace = {
65
66
67
68
        "{}positional_embedding": "{}embeddings.position_embedding.weight",
        "{}token_embedding.weight": "{}embeddings.token_embedding.weight",
        "{}ln_final.weight": "{}final_layer_norm.weight",
        "{}ln_final.bias": "{}final_layer_norm.bias",
comfyanonymous's avatar
comfyanonymous committed
69
70
71
72
73
74
75
    }

    for k in keys_to_replace:
        x = k.format(prefix_from)
        if x in sd:
            sd[keys_to_replace[k].format(prefix_to)] = sd.pop(x)

76
77
78
79
80
81
82
83
84
85
86
    resblock_to_replace = {
        "ln_1": "layer_norm1",
        "ln_2": "layer_norm2",
        "mlp.c_fc": "mlp.fc1",
        "mlp.c_proj": "mlp.fc2",
        "attn.out_proj": "self_attn.out_proj",
    }

    for resblock in range(number):
        for x in resblock_to_replace:
            for y in ["weight", "bias"]:
87
88
                k = "{}transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
                k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
89
90
91
92
                if k in sd:
                    sd[k_to] = sd.pop(k)

        for y in ["weight", "bias"]:
93
            k_from = "{}transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
94
95
96
97
98
            if k_from in sd:
                weights = sd.pop(k_from)
                shape_from = weights.shape[0] // 3
                for x in range(3):
                    p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
99
                    k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
100
101
102
                    sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
    return sd

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
UNET_MAP_ATTENTIONS = {
    "proj_in.weight",
    "proj_in.bias",
    "proj_out.weight",
    "proj_out.bias",
    "norm.weight",
    "norm.bias",
}

TRANSFORMER_BLOCKS = {
    "norm1.weight",
    "norm1.bias",
    "norm2.weight",
    "norm2.bias",
    "norm3.weight",
    "norm3.bias",
    "attn1.to_q.weight",
    "attn1.to_k.weight",
    "attn1.to_v.weight",
    "attn1.to_out.0.weight",
    "attn1.to_out.0.bias",
    "attn2.to_q.weight",
    "attn2.to_k.weight",
    "attn2.to_v.weight",
    "attn2.to_out.0.weight",
    "attn2.to_out.0.bias",
    "ff.net.0.proj.weight",
    "ff.net.0.proj.bias",
    "ff.net.2.weight",
    "ff.net.2.bias",
}

UNET_MAP_RESNET = {
    "in_layers.2.weight": "conv1.weight",
    "in_layers.2.bias": "conv1.bias",
    "emb_layers.1.weight": "time_emb_proj.weight",
    "emb_layers.1.bias": "time_emb_proj.bias",
    "out_layers.3.weight": "conv2.weight",
    "out_layers.3.bias": "conv2.bias",
    "skip_connection.weight": "conv_shortcut.weight",
    "skip_connection.bias": "conv_shortcut.bias",
    "in_layers.0.weight": "norm1.weight",
    "in_layers.0.bias": "norm1.bias",
    "out_layers.0.weight": "norm2.weight",
    "out_layers.0.bias": "norm2.bias",
}

150
UNET_MAP_BASIC = {
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    ("label_emb.0.0.weight", "class_embedding.linear_1.weight"),
    ("label_emb.0.0.bias", "class_embedding.linear_1.bias"),
    ("label_emb.0.2.weight", "class_embedding.linear_2.weight"),
    ("label_emb.0.2.bias", "class_embedding.linear_2.bias"),
    ("label_emb.0.0.weight", "add_embedding.linear_1.weight"),
    ("label_emb.0.0.bias", "add_embedding.linear_1.bias"),
    ("label_emb.0.2.weight", "add_embedding.linear_2.weight"),
    ("label_emb.0.2.bias", "add_embedding.linear_2.bias"),
    ("input_blocks.0.0.weight", "conv_in.weight"),
    ("input_blocks.0.0.bias", "conv_in.bias"),
    ("out.0.weight", "conv_norm_out.weight"),
    ("out.0.bias", "conv_norm_out.bias"),
    ("out.2.weight", "conv_out.weight"),
    ("out.2.bias", "conv_out.bias"),
    ("time_embed.0.weight", "time_embedding.linear_1.weight"),
    ("time_embed.0.bias", "time_embedding.linear_1.bias"),
    ("time_embed.2.weight", "time_embedding.linear_2.weight"),
    ("time_embed.2.bias", "time_embedding.linear_2.bias")
169
170
}

171
def unet_to_diffusers(unet_config):
comfyanonymous's avatar
comfyanonymous committed
172
173
    if "num_res_blocks" not in unet_config:
        return {}
174
175
    num_res_blocks = unet_config["num_res_blocks"]
    channel_mult = unet_config["channel_mult"]
176
177
    transformer_depth = unet_config["transformer_depth"][:]
    transformer_depth_output = unet_config["transformer_depth_output"][:]
178
    num_blocks = len(channel_mult)
179
180

    transformers_mid = unet_config.get("transformer_depth_middle", None)
181
182
183
184
185
186
187

    diffusers_unet_map = {}
    for x in range(num_blocks):
        n = 1 + (num_res_blocks[x] + 1) * x
        for i in range(num_res_blocks[x]):
            for b in UNET_MAP_RESNET:
                diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
188
189
            num_transformers = transformer_depth.pop(0)
            if num_transformers > 0:
190
191
                for b in UNET_MAP_ATTENTIONS:
                    diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b)
192
                for t in range(num_transformers):
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
                    for b in TRANSFORMER_BLOCKS:
                        diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
            n += 1
        for k in ["weight", "bias"]:
            diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k)

    i = 0
    for b in UNET_MAP_ATTENTIONS:
        diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b)
    for t in range(transformers_mid):
        for b in TRANSFORMER_BLOCKS:
            diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b)

    for i, n in enumerate([0, 2]):
        for b in UNET_MAP_RESNET:
            diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)

    num_res_blocks = list(reversed(num_res_blocks))
    for x in range(num_blocks):
        n = (num_res_blocks[x] + 1) * x
        l = num_res_blocks[x] + 1
        for i in range(l):
            c = 0
            for b in UNET_MAP_RESNET:
                diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b)
            c += 1
219
220
            num_transformers = transformer_depth_output.pop()
            if num_transformers > 0:
221
222
223
                c += 1
                for b in UNET_MAP_ATTENTIONS:
                    diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b)
224
                for t in range(num_transformers):
225
226
227
228
229
230
                    for b in TRANSFORMER_BLOCKS:
                        diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
            if i == l - 1:
                for k in ["weight", "bias"]:
                    diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k)
            n += 1
231
232

    for k in UNET_MAP_BASIC:
233
        diffusers_unet_map[k[1]] = k[0]
234

235
236
    return diffusers_unet_map

237
238
239
240
241
242
243
def repeat_to_batch_size(tensor, batch_size):
    if tensor.shape[0] > batch_size:
        return tensor[:batch_size]
    elif tensor.shape[0] < batch_size:
        return tensor.repeat([math.ceil(batch_size / tensor.shape[0])] + [1] * (len(tensor.shape) - 1))[:batch_size]
    return tensor

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
def resize_to_batch_size(tensor, batch_size):
    in_batch_size = tensor.shape[0]
    if in_batch_size == batch_size:
        return tensor

    if batch_size <= 1:
        return tensor[:batch_size]

    output = torch.empty([batch_size] + list(tensor.shape)[1:], dtype=tensor.dtype, device=tensor.device)
    if batch_size < in_batch_size:
        scale = (in_batch_size - 1) / (batch_size - 1)
        for i in range(batch_size):
            output[i] = tensor[min(round(i * scale), in_batch_size - 1)]
    else:
        scale = in_batch_size / batch_size
        for i in range(batch_size):
            output[i] = tensor[min(math.floor((i + 0.5) * scale), in_batch_size - 1)]

    return output

264
265
266
267
268
269
def convert_sd_to(state_dict, dtype):
    keys = list(state_dict.keys())
    for k in keys:
        state_dict[k] = state_dict[k].to(dtype)
    return state_dict

270
271
272
273
274
275
276
277
def safetensors_header(safetensors_path, max_size=100*1024*1024):
    with open(safetensors_path, "rb") as f:
        header = f.read(8)
        length_of_header = struct.unpack('<Q', header)[0]
        if length_of_header > max_size:
            return None
        return f.read(length_of_header)

278
279
280
281
282
def set_attr(obj, attr, value):
    attrs = attr.split(".")
    for name in attrs[:-1]:
        obj = getattr(obj, name)
    prev = getattr(obj, attrs[-1])
comfyanonymous's avatar
comfyanonymous committed
283
    setattr(obj, attrs[-1], torch.nn.Parameter(value, requires_grad=False))
284
285
    del prev

286
287
288
289
290
291
292
293
def copy_to_param(obj, attr, value):
    # inplace update tensor instead of replacing it
    attrs = attr.split(".")
    for name in attrs[:-1]:
        obj = getattr(obj, name)
    prev = getattr(obj, attrs[-1])
    prev.data.copy_(value)

294
295
296
297
298
299
def get_attr(obj, attr):
    attrs = attr.split(".")
    for name in attrs:
        obj = getattr(obj, name)
    return obj

300
def bislerp(samples, width, height):
BlenderNeko's avatar
BlenderNeko committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    def slerp(b1, b2, r):
        '''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC'''
        
        c = b1.shape[-1]

        #norms
        b1_norms = torch.norm(b1, dim=-1, keepdim=True)
        b2_norms = torch.norm(b2, dim=-1, keepdim=True)

        #normalize
        b1_normalized = b1 / b1_norms
        b2_normalized = b2 / b2_norms

        #zero when norms are zero
        b1_normalized[b1_norms.expand(-1,c) == 0.0] = 0.0
        b2_normalized[b2_norms.expand(-1,c) == 0.0] = 0.0

        #slerp
        dot = (b1_normalized*b2_normalized).sum(1)
        omega = torch.acos(dot)
321
        so = torch.sin(omega)
BlenderNeko's avatar
BlenderNeko committed
322
323
324
325
326
327
328
329
330
331

        #technically not mathematically correct, but more pleasing?
        res = (torch.sin((1.0-r.squeeze(1))*omega)/so).unsqueeze(1)*b1_normalized + (torch.sin(r.squeeze(1)*omega)/so).unsqueeze(1) * b2_normalized
        res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c)

        #edge cases for same or polar opposites
        res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5] 
        res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1]
        return res
    
comfyanonymous's avatar
comfyanonymous committed
332
333
    def generate_bilinear_data(length_old, length_new, device):
        coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1))
BlenderNeko's avatar
BlenderNeko committed
334
335
336
337
        coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear")
        ratios = coords_1 - coords_1.floor()
        coords_1 = coords_1.to(torch.int64)
        
comfyanonymous's avatar
comfyanonymous committed
338
        coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + 1
BlenderNeko's avatar
BlenderNeko committed
339
340
341
342
        coords_2[:,:,:,-1] -= 1
        coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear")
        coords_2 = coords_2.to(torch.int64)
        return ratios, coords_1, coords_2
343
344
345

    orig_dtype = samples.dtype
    samples = samples.float()
BlenderNeko's avatar
BlenderNeko committed
346
347
348
    n,c,h,w = samples.shape
    h_new, w_new = (height, width)
    
349
    #linear w
comfyanonymous's avatar
comfyanonymous committed
350
    ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device)
351
352
353
    coords_1 = coords_1.expand((n, c, h, -1))
    coords_2 = coords_2.expand((n, c, h, -1))
    ratios = ratios.expand((n, 1, h, -1))
BlenderNeko's avatar
BlenderNeko committed
354

comfyanonymous's avatar
comfyanonymous committed
355
356
357
    pass_1 = samples.gather(-1,coords_1).movedim(1, -1).reshape((-1,c))
    pass_2 = samples.gather(-1,coords_2).movedim(1, -1).reshape((-1,c))
    ratios = ratios.movedim(1, -1).reshape((-1,1))
BlenderNeko's avatar
BlenderNeko committed
358
359

    result = slerp(pass_1, pass_2, ratios)
comfyanonymous's avatar
comfyanonymous committed
360
    result = result.reshape(n, h, w_new, c).movedim(-1, 1)
BlenderNeko's avatar
BlenderNeko committed
361

362
    #linear h
comfyanonymous's avatar
comfyanonymous committed
363
    ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device)
364
365
366
    coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
    coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
    ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new))
BlenderNeko's avatar
BlenderNeko committed
367

comfyanonymous's avatar
comfyanonymous committed
368
369
370
    pass_1 = result.gather(-2,coords_1).movedim(1, -1).reshape((-1,c))
    pass_2 = result.gather(-2,coords_2).movedim(1, -1).reshape((-1,c))
    ratios = ratios.movedim(1, -1).reshape((-1,1))
BlenderNeko's avatar
BlenderNeko committed
371
372

    result = slerp(pass_1, pass_2, ratios)
comfyanonymous's avatar
comfyanonymous committed
373
    result = result.reshape(n, h_new, w_new, c).movedim(-1, 1)
374
    return result.to(orig_dtype)
375

376
def lanczos(samples, width, height):
comfyanonymous's avatar
comfyanonymous committed
377
    images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples]
378
    images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images]
comfyanonymous's avatar
comfyanonymous committed
379
    images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images]
380
    result = torch.stack(images)
381
    return result.to(samples.device, samples.dtype)
382

comfyanonymous's avatar
comfyanonymous committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
def common_upscale(samples, width, height, upscale_method, crop):
        if crop == "center":
            old_width = samples.shape[3]
            old_height = samples.shape[2]
            old_aspect = old_width / old_height
            new_aspect = width / height
            x = 0
            y = 0
            if old_aspect > new_aspect:
                x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
            elif old_aspect < new_aspect:
                y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
            s = samples[:,:,y:old_height-y,x:old_width-x]
        else:
            s = samples
398
399
400

        if upscale_method == "bislerp":
            return bislerp(s, width, height)
401
402
        elif upscale_method == "lanczos":
            return lanczos(s, width, height)
403
404
        else:
            return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
405

pythongosssss's avatar
pythongosssss committed
406
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
comfyanonymous's avatar
comfyanonymous committed
407
    return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
pythongosssss's avatar
pythongosssss committed
408

409
@torch.inference_mode()
410
411
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
    output = torch.empty((samples.shape[0], out_channels, round(samples.shape[2] * upscale_amount), round(samples.shape[3] * upscale_amount)), device=output_device)
412
413
    for b in range(samples.shape[0]):
        s = samples[b:b+1]
414
415
        out = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device=output_device)
        out_div = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device=output_device)
416
417
        for y in range(0, s.shape[2], tile_y - overlap):
            for x in range(0, s.shape[3], tile_x - overlap):
418
419
                x = max(0, min(s.shape[-1] - overlap, x))
                y = max(0, min(s.shape[-2] - overlap, y))
420
421
                s_in = s[:,:,y:y+tile_y,x:x+tile_x]

422
                ps = function(s_in).to(output_device)
423
                mask = torch.ones_like(ps)
424
                feather = round(overlap * upscale_amount)
425
426
427
428
429
                for t in range(feather):
                        mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
                        mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                        mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                        mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
430
431
                out[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += ps * mask
                out_div[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += mask
432
433
                if pbar is not None:
                    pbar.update(1)
434
435
436

        output[b:b+1] = out/out_div
    return output
437

438
439
440
441
PROGRESS_BAR_ENABLED = True
def set_progress_bar_enabled(enabled):
    global PROGRESS_BAR_ENABLED
    PROGRESS_BAR_ENABLED = enabled
442
443
444
445
446
447
448
449
450
451
452
453
454

PROGRESS_BAR_HOOK = None
def set_progress_bar_global_hook(function):
    global PROGRESS_BAR_HOOK
    PROGRESS_BAR_HOOK = function

class ProgressBar:
    def __init__(self, total):
        global PROGRESS_BAR_HOOK
        self.total = total
        self.current = 0
        self.hook = PROGRESS_BAR_HOOK

space-nuko's avatar
space-nuko committed
455
    def update_absolute(self, value, total=None, preview=None):
456
457
        if total is not None:
            self.total = total
458
459
460
461
        if value > self.total:
            value = self.total
        self.current = value
        if self.hook is not None:
space-nuko's avatar
space-nuko committed
462
            self.hook(self.current, self.total, preview)
463
464
465

    def update(self, value):
        self.update_absolute(self.current + value)