nodes_model_merging.py 12.3 KB
Newer Older
1
2
import comfy.sd
import comfy.utils
3
import comfy.model_base
comfyanonymous's avatar
comfyanonymous committed
4
import comfy.model_management
5
import comfy.model_sampling
6

7
import torch
8
9
10
import folder_paths
import json
import os
11

12
13
from comfy.cli_args import args

14
15
16
17
18
19
20
21
22
23
class ModelMergeSimple:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model1": ("MODEL",),
                              "model2": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "merge"

24
    CATEGORY = "advanced/model_merging"
25
26
27

    def merge(self, model1, model2, ratio):
        m = model1.clone()
28
29
30
        kp = model2.get_key_patches("diffusion_model.")
        for k in kp:
            m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
31
32
        return (m, )

33
34
35
36
37
38
39
40
41
42
class ModelSubtract:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model1": ("MODEL",),
                              "model2": ("MODEL",),
                              "multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "merge"

43
    CATEGORY = "advanced/model_merging"
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

    def merge(self, model1, model2, multiplier):
        m = model1.clone()
        kp = model2.get_key_patches("diffusion_model.")
        for k in kp:
            m.add_patches({k: kp[k]}, - multiplier, multiplier)
        return (m, )

class ModelAdd:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model1": ("MODEL",),
                              "model2": ("MODEL",),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "merge"

61
    CATEGORY = "advanced/model_merging"
62
63
64
65
66
67
68
69
70

    def merge(self, model1, model2):
        m = model1.clone()
        kp = model2.get_key_patches("diffusion_model.")
        for k in kp:
            m.add_patches({k: kp[k]}, 1.0, 1.0)
        return (m, )


71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
class CLIPMergeSimple:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip1": ("CLIP",),
                              "clip2": ("CLIP",),
                              "ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "merge"

    CATEGORY = "advanced/model_merging"

    def merge(self, clip1, clip2, ratio):
        m = clip1.clone()
        kp = clip2.get_key_patches()
        for k in kp:
            if k.endswith(".position_ids") or k.endswith(".logit_scale"):
                continue
            m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
        return (m, )

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

class CLIPSubtract:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip1": ("CLIP",),
                              "clip2": ("CLIP",),
                              "multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "merge"

    CATEGORY = "advanced/model_merging"

    def merge(self, clip1, clip2, multiplier):
        m = clip1.clone()
        kp = clip2.get_key_patches()
        for k in kp:
            if k.endswith(".position_ids") or k.endswith(".logit_scale"):
                continue
            m.add_patches({k: kp[k]}, - multiplier, multiplier)
        return (m, )


class CLIPAdd:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip1": ("CLIP",),
                              "clip2": ("CLIP",),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "merge"

    CATEGORY = "advanced/model_merging"

    def merge(self, clip1, clip2):
        m = clip1.clone()
        kp = clip2.get_key_patches()
        for k in kp:
            if k.endswith(".position_ids") or k.endswith(".logit_scale"):
                continue
            m.add_patches({k: kp[k]}, 1.0, 1.0)
        return (m, )


136
137
138
139
140
141
142
143
144
145
146
147
class ModelMergeBlocks:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model1": ("MODEL",),
                              "model2": ("MODEL",),
                              "input": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                              "middle": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                              "out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "merge"

148
    CATEGORY = "advanced/model_merging"
149
150
151

    def merge(self, model1, model2, **kwargs):
        m = model1.clone()
152
        kp = model2.get_key_patches("diffusion_model.")
153
154
        default_ratio = next(iter(kwargs.values()))

155
        for k in kp:
156
157
158
            ratio = default_ratio
            k_unet = k[len("diffusion_model."):]

159
            last_arg_size = 0
160
            for arg in kwargs:
161
                if k_unet.startswith(arg) and last_arg_size < len(arg):
162
                    ratio = kwargs[arg]
163
                    last_arg_size = len(arg)
164

165
            m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
166
167
        return (m, )

168
169
170
171
172
173
174
175
176
177
def save_checkpoint(model, clip=None, vae=None, clip_vision=None, filename_prefix=None, output_dir=None, prompt=None, extra_pnginfo=None):
    full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, output_dir)
    prompt_info = ""
    if prompt is not None:
        prompt_info = json.dumps(prompt)

    metadata = {}

    enable_modelspec = True
    if isinstance(model.model, comfy.model_base.SDXL):
178
179
180
181
        if isinstance(model.model, comfy.model_base.SDXL_instructpix2pix):
            metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-edit"
        else:
            metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-base"
182
183
    elif isinstance(model.model, comfy.model_base.SDXLRefiner):
        metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-refiner"
184
185
    elif isinstance(model.model, comfy.model_base.SVD_img2vid):
        metadata["modelspec.architecture"] = "stable-video-diffusion-img2vid-v1"
186
187
    elif isinstance(model.model, comfy.model_base.SD3):
        metadata["modelspec.architecture"] = "stable-diffusion-v3-medium" #TODO: other SD3 variants
188
189
190
191
192
193
194
195
196
197
198
199
200
    else:
        enable_modelspec = False

    if enable_modelspec:
        metadata["modelspec.sai_model_spec"] = "1.0.0"
        metadata["modelspec.implementation"] = "sgm"
        metadata["modelspec.title"] = "{} {}".format(filename, counter)

    #TODO:
    # "stable-diffusion-v1", "stable-diffusion-v1-inpainting", "stable-diffusion-v2-512",
    # "stable-diffusion-v2-768-v", "stable-diffusion-v2-unclip-l", "stable-diffusion-v2-unclip-h",
    # "v2-inpainting"

201
202
203
204
205
206
207
    extra_keys = {}
    model_sampling = model.get_model_object("model_sampling")
    if isinstance(model_sampling, comfy.model_sampling.ModelSamplingContinuousEDM):
        if isinstance(model_sampling, comfy.model_sampling.V_PREDICTION):
            extra_keys["edm_vpred.sigma_max"] = torch.tensor(model_sampling.sigma_max).float()
            extra_keys["edm_vpred.sigma_min"] = torch.tensor(model_sampling.sigma_min).float()

208
209
210
211
212
213
214
215
216
217
218
219
220
221
    if model.model.model_type == comfy.model_base.ModelType.EPS:
        metadata["modelspec.predict_key"] = "epsilon"
    elif model.model.model_type == comfy.model_base.ModelType.V_PREDICTION:
        metadata["modelspec.predict_key"] = "v"

    if not args.disable_metadata:
        metadata["prompt"] = prompt_info
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata[x] = json.dumps(extra_pnginfo[x])

    output_checkpoint = f"{filename}_{counter:05}_.safetensors"
    output_checkpoint = os.path.join(full_output_folder, output_checkpoint)

222
    comfy.sd.save_checkpoint(output_checkpoint, model, clip, vae, clip_vision, metadata=metadata, extra_keys=extra_keys)
223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
class CheckpointSave:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP",),
                              "vae": ("VAE",),
                              "filename_prefix": ("STRING", {"default": "checkpoints/ComfyUI"}),},
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
    RETURN_TYPES = ()
    FUNCTION = "save"
    OUTPUT_NODE = True

239
    CATEGORY = "advanced/model_merging"
240
241

    def save(self, model, clip, vae, filename_prefix, prompt=None, extra_pnginfo=None):
242
        save_checkpoint(model, clip=clip, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo)
243
244
        return {}

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
class CLIPSave:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP",),
                              "filename_prefix": ("STRING", {"default": "clip/ComfyUI"}),},
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
    RETURN_TYPES = ()
    FUNCTION = "save"
    OUTPUT_NODE = True

    CATEGORY = "advanced/model_merging"

    def save(self, clip, filename_prefix, prompt=None, extra_pnginfo=None):
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

        metadata = {}
        if not args.disable_metadata:
            metadata["prompt"] = prompt_info
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])

272
        comfy.model_management.load_models_gpu([clip.load_model()], force_patch_weights=True)
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
        clip_sd = clip.get_sd()

        for prefix in ["clip_l.", "clip_g.", ""]:
            k = list(filter(lambda a: a.startswith(prefix), clip_sd.keys()))
            current_clip_sd = {}
            for x in k:
                current_clip_sd[x] = clip_sd.pop(x)
            if len(current_clip_sd) == 0:
                continue

            p = prefix[:-1]
            replace_prefix = {}
            filename_prefix_ = filename_prefix
            if len(p) > 0:
                filename_prefix_ = "{}_{}".format(filename_prefix_, p)
                replace_prefix[prefix] = ""
            replace_prefix["transformer."] = ""

            full_output_folder, filename, counter, subfolder, filename_prefix_ = folder_paths.get_save_image_path(filename_prefix_, self.output_dir)

            output_checkpoint = f"{filename}_{counter:05}_.safetensors"
            output_checkpoint = os.path.join(full_output_folder, output_checkpoint)

            current_clip_sd = comfy.utils.state_dict_prefix_replace(current_clip_sd, replace_prefix)

            comfy.utils.save_torch_file(current_clip_sd, output_checkpoint, metadata=metadata)
        return {}

comfyanonymous's avatar
comfyanonymous committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
class VAESave:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "vae": ("VAE",),
                              "filename_prefix": ("STRING", {"default": "vae/ComfyUI_vae"}),},
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
    RETURN_TYPES = ()
    FUNCTION = "save"
    OUTPUT_NODE = True

    CATEGORY = "advanced/model_merging"

    def save(self, vae, filename_prefix, prompt=None, extra_pnginfo=None):
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

        metadata = {}
        if not args.disable_metadata:
            metadata["prompt"] = prompt_info
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])

        output_checkpoint = f"{filename}_{counter:05}_.safetensors"
        output_checkpoint = os.path.join(full_output_folder, output_checkpoint)

        comfy.utils.save_torch_file(vae.get_sd(), output_checkpoint, metadata=metadata)
        return {}
334

335
336
NODE_CLASS_MAPPINGS = {
    "ModelMergeSimple": ModelMergeSimple,
337
    "ModelMergeBlocks": ModelMergeBlocks,
338
339
    "ModelMergeSubtract": ModelSubtract,
    "ModelMergeAdd": ModelAdd,
340
    "CheckpointSave": CheckpointSave,
341
    "CLIPMergeSimple": CLIPMergeSimple,
342
343
    "CLIPMergeSubtract": CLIPSubtract,
    "CLIPMergeAdd": CLIPAdd,
344
    "CLIPSave": CLIPSave,
comfyanonymous's avatar
comfyanonymous committed
345
    "VAESave": VAESave,
346
}