nodes_model_merging.py 10.1 KB
Newer Older
1
2
import comfy.sd
import comfy.utils
3
import comfy.model_base
comfyanonymous's avatar
comfyanonymous committed
4
import comfy.model_management
5

6
7
8
import folder_paths
import json
import os
9

10
11
from comfy.cli_args import args

12
13
14
15
16
17
18
19
20
21
class ModelMergeSimple:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model1": ("MODEL",),
                              "model2": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "merge"

22
    CATEGORY = "advanced/model_merging"
23
24
25

    def merge(self, model1, model2, ratio):
        m = model1.clone()
26
27
28
        kp = model2.get_key_patches("diffusion_model.")
        for k in kp:
            m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
29
30
        return (m, )

31
32
33
34
35
36
37
38
39
40
class ModelSubtract:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model1": ("MODEL",),
                              "model2": ("MODEL",),
                              "multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "merge"

41
    CATEGORY = "advanced/model_merging"
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

    def merge(self, model1, model2, multiplier):
        m = model1.clone()
        kp = model2.get_key_patches("diffusion_model.")
        for k in kp:
            m.add_patches({k: kp[k]}, - multiplier, multiplier)
        return (m, )

class ModelAdd:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model1": ("MODEL",),
                              "model2": ("MODEL",),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "merge"

59
    CATEGORY = "advanced/model_merging"
60
61
62
63
64
65
66
67
68

    def merge(self, model1, model2):
        m = model1.clone()
        kp = model2.get_key_patches("diffusion_model.")
        for k in kp:
            m.add_patches({k: kp[k]}, 1.0, 1.0)
        return (m, )


69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
class CLIPMergeSimple:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip1": ("CLIP",),
                              "clip2": ("CLIP",),
                              "ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "merge"

    CATEGORY = "advanced/model_merging"

    def merge(self, clip1, clip2, ratio):
        m = clip1.clone()
        kp = clip2.get_key_patches()
        for k in kp:
            if k.endswith(".position_ids") or k.endswith(".logit_scale"):
                continue
            m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
        return (m, )

90
91
92
93
94
95
96
97
98
99
100
101
class ModelMergeBlocks:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model1": ("MODEL",),
                              "model2": ("MODEL",),
                              "input": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                              "middle": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                              "out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "merge"

102
    CATEGORY = "advanced/model_merging"
103
104
105

    def merge(self, model1, model2, **kwargs):
        m = model1.clone()
106
        kp = model2.get_key_patches("diffusion_model.")
107
108
        default_ratio = next(iter(kwargs.values()))

109
        for k in kp:
110
111
112
            ratio = default_ratio
            k_unet = k[len("diffusion_model."):]

113
            last_arg_size = 0
114
            for arg in kwargs:
115
                if k_unet.startswith(arg) and last_arg_size < len(arg):
116
                    ratio = kwargs[arg]
117
                    last_arg_size = len(arg)
118

119
            m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
120
121
        return (m, )

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
def save_checkpoint(model, clip=None, vae=None, clip_vision=None, filename_prefix=None, output_dir=None, prompt=None, extra_pnginfo=None):
    full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, output_dir)
    prompt_info = ""
    if prompt is not None:
        prompt_info = json.dumps(prompt)

    metadata = {}

    enable_modelspec = True
    if isinstance(model.model, comfy.model_base.SDXL):
        metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-base"
    elif isinstance(model.model, comfy.model_base.SDXLRefiner):
        metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-refiner"
    else:
        enable_modelspec = False

    if enable_modelspec:
        metadata["modelspec.sai_model_spec"] = "1.0.0"
        metadata["modelspec.implementation"] = "sgm"
        metadata["modelspec.title"] = "{} {}".format(filename, counter)

    #TODO:
    # "stable-diffusion-v1", "stable-diffusion-v1-inpainting", "stable-diffusion-v2-512",
    # "stable-diffusion-v2-768-v", "stable-diffusion-v2-unclip-l", "stable-diffusion-v2-unclip-h",
    # "v2-inpainting"

    if model.model.model_type == comfy.model_base.ModelType.EPS:
        metadata["modelspec.predict_key"] = "epsilon"
    elif model.model.model_type == comfy.model_base.ModelType.V_PREDICTION:
        metadata["modelspec.predict_key"] = "v"

    if not args.disable_metadata:
        metadata["prompt"] = prompt_info
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata[x] = json.dumps(extra_pnginfo[x])

    output_checkpoint = f"{filename}_{counter:05}_.safetensors"
    output_checkpoint = os.path.join(full_output_folder, output_checkpoint)

    comfy.sd.save_checkpoint(output_checkpoint, model, clip, vae, clip_vision, metadata=metadata)

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
class CheckpointSave:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP",),
                              "vae": ("VAE",),
                              "filename_prefix": ("STRING", {"default": "checkpoints/ComfyUI"}),},
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
    RETURN_TYPES = ()
    FUNCTION = "save"
    OUTPUT_NODE = True

179
    CATEGORY = "advanced/model_merging"
180
181

    def save(self, model, clip, vae, filename_prefix, prompt=None, extra_pnginfo=None):
182
        save_checkpoint(model, clip=clip, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo)
183
184
        return {}

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
class CLIPSave:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP",),
                              "filename_prefix": ("STRING", {"default": "clip/ComfyUI"}),},
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
    RETURN_TYPES = ()
    FUNCTION = "save"
    OUTPUT_NODE = True

    CATEGORY = "advanced/model_merging"

    def save(self, clip, filename_prefix, prompt=None, extra_pnginfo=None):
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

        metadata = {}
        if not args.disable_metadata:
            metadata["prompt"] = prompt_info
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])

        comfy.model_management.load_models_gpu([clip.load_model()])
        clip_sd = clip.get_sd()

        for prefix in ["clip_l.", "clip_g.", ""]:
            k = list(filter(lambda a: a.startswith(prefix), clip_sd.keys()))
            current_clip_sd = {}
            for x in k:
                current_clip_sd[x] = clip_sd.pop(x)
            if len(current_clip_sd) == 0:
                continue

            p = prefix[:-1]
            replace_prefix = {}
            filename_prefix_ = filename_prefix
            if len(p) > 0:
                filename_prefix_ = "{}_{}".format(filename_prefix_, p)
                replace_prefix[prefix] = ""
            replace_prefix["transformer."] = ""

            full_output_folder, filename, counter, subfolder, filename_prefix_ = folder_paths.get_save_image_path(filename_prefix_, self.output_dir)

            output_checkpoint = f"{filename}_{counter:05}_.safetensors"
            output_checkpoint = os.path.join(full_output_folder, output_checkpoint)

            current_clip_sd = comfy.utils.state_dict_prefix_replace(current_clip_sd, replace_prefix)

            comfy.utils.save_torch_file(current_clip_sd, output_checkpoint, metadata=metadata)
        return {}

comfyanonymous's avatar
comfyanonymous committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
class VAESave:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "vae": ("VAE",),
                              "filename_prefix": ("STRING", {"default": "vae/ComfyUI_vae"}),},
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
    RETURN_TYPES = ()
    FUNCTION = "save"
    OUTPUT_NODE = True

    CATEGORY = "advanced/model_merging"

    def save(self, vae, filename_prefix, prompt=None, extra_pnginfo=None):
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

        metadata = {}
        if not args.disable_metadata:
            metadata["prompt"] = prompt_info
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])

        output_checkpoint = f"{filename}_{counter:05}_.safetensors"
        output_checkpoint = os.path.join(full_output_folder, output_checkpoint)

        comfy.utils.save_torch_file(vae.get_sd(), output_checkpoint, metadata=metadata)
        return {}
274

275
276
NODE_CLASS_MAPPINGS = {
    "ModelMergeSimple": ModelMergeSimple,
277
    "ModelMergeBlocks": ModelMergeBlocks,
278
279
    "ModelMergeSubtract": ModelSubtract,
    "ModelMergeAdd": ModelAdd,
280
    "CheckpointSave": CheckpointSave,
281
    "CLIPMergeSimple": CLIPMergeSimple,
282
    "CLIPSave": CLIPSave,
comfyanonymous's avatar
comfyanonymous committed
283
    "VAESave": VAESave,
284
}