"Plugson/vscode:/vscode.git/clone" did not exist on "b8e624b0a0a5daf70c2bd71ccc043f463b3b6529"
nodes_post_processing.py 9.28 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
5
import math
comfyanonymous's avatar
comfyanonymous committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

import comfy.utils


class Blend:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image1": ("IMAGE",),
                "image2": ("IMAGE",),
                "blend_factor": ("FLOAT", {
                    "default": 0.5,
                    "min": 0.0,
                    "max": 1.0,
                    "step": 0.01
                }),
                "blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "blend_images"

33
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

    def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
        if image1.shape != image2.shape:
            image2 = image2.permute(0, 3, 1, 2)
            image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
            image2 = image2.permute(0, 2, 3, 1)

        blended_image = self.blend_mode(image1, image2, blend_mode)
        blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
        blended_image = torch.clamp(blended_image, 0, 1)
        return (blended_image,)

    def blend_mode(self, img1, img2, mode):
        if mode == "normal":
            return img2
        elif mode == "multiply":
            return img1 * img2
        elif mode == "screen":
            return 1 - (1 - img1) * (1 - img2)
        elif mode == "overlay":
            return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
        elif mode == "soft_light":
            return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
        else:
            raise ValueError(f"Unsupported blend mode: {mode}")

    def g(self, x):
        return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))

63
64
def gaussian_kernel(kernel_size: int, sigma: float, device=None):
    x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij")
BlenderNeko's avatar
BlenderNeko committed
65
66
67
68
    d = torch.sqrt(x * x + y * y)
    g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
    return g / g.sum()

comfyanonymous's avatar
comfyanonymous committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
class Blur:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "blur_radius": ("INT", {
                    "default": 1,
                    "min": 1,
                    "max": 31,
                    "step": 1
                }),
                "sigma": ("FLOAT", {
                    "default": 1.0,
                    "min": 0.1,
                    "max": 10.0,
                    "step": 0.1
                }),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "blur"

96
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
101
102
103
104

    def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
        if blur_radius == 0:
            return (image,)

        batch_size, height, width, channels = image.shape

        kernel_size = blur_radius * 2 + 1
105
        kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1)
comfyanonymous's avatar
comfyanonymous committed
106
107

        image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
BlenderNeko's avatar
BlenderNeko committed
108
        padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
comfyanonymous's avatar
comfyanonymous committed
109
        blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
comfyanonymous's avatar
comfyanonymous committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        blurred = blurred.permute(0, 2, 3, 1)

        return (blurred,)

class Quantize:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "colors": ("INT", {
                    "default": 256,
                    "min": 1,
                    "max": 256,
                    "step": 1
                }),
129
                "dither": (["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"],),
comfyanonymous's avatar
comfyanonymous committed
130
131
132
133
134
135
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "quantize"

136
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    def bayer(im, pal_im, order):
        def normalized_bayer_matrix(n):
            if n == 0:
                return np.zeros((1,1), "float32")
            else:
                q = 4 ** n
                m = q * normalized_bayer_matrix(n - 1)
                return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q

        num_colors = len(pal_im.getpalette()) // 3
        spread = 2 * 256 / num_colors
        bayer_n = int(math.log2(order))
        bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5)

        result = torch.from_numpy(np.array(im).astype(np.float32))
        tw = math.ceil(result.shape[0] / bayer_matrix.shape[0])
        th = math.ceil(result.shape[1] / bayer_matrix.shape[1])
        tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1)
        result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255)
        result = result.to(dtype=torch.uint8)

        im = Image.fromarray(result.cpu().numpy())
        im = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
        return im

    def quantize(self, image: torch.Tensor, colors: int, dither: str):
comfyanonymous's avatar
comfyanonymous committed
164
165
166
167
        batch_size, height, width, _ = image.shape
        result = torch.zeros_like(image)

        for b in range(batch_size):
168
169
170
            im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB')

            pal_im = im.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
comfyanonymous's avatar
comfyanonymous committed
171

172
173
174
175
176
177
178
            if dither == "none":
                quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
            elif dither == "floyd-steinberg":
                quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG)
            elif dither.startswith("bayer"):
                order = int(dither.split('-')[-1])
                quantized_image = Quantize.bayer(im, pal_im, order)
comfyanonymous's avatar
comfyanonymous committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

            quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
            result[b] = quantized_array

        return (result,)

class Sharpen:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "sharpen_radius": ("INT", {
                    "default": 1,
                    "min": 1,
                    "max": 31,
                    "step": 1
                }),
BlenderNeko's avatar
BlenderNeko committed
200
                "sigma": ("FLOAT", {
comfyanonymous's avatar
comfyanonymous committed
201
202
                    "default": 1.0,
                    "min": 0.1,
BlenderNeko's avatar
BlenderNeko committed
203
204
205
206
207
208
                    "max": 10.0,
                    "step": 0.1
                }),
                "alpha": ("FLOAT", {
                    "default": 1.0,
                    "min": 0.0,
comfyanonymous's avatar
comfyanonymous committed
209
210
211
212
213
214
215
216
217
                    "max": 5.0,
                    "step": 0.1
                }),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "sharpen"

218
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
219

BlenderNeko's avatar
BlenderNeko committed
220
    def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float):
comfyanonymous's avatar
comfyanonymous committed
221
222
223
224
225
226
        if sharpen_radius == 0:
            return (image,)

        batch_size, height, width, channels = image.shape

        kernel_size = sharpen_radius * 2 + 1
BlenderNeko's avatar
BlenderNeko committed
227
        kernel = gaussian_kernel(kernel_size, sigma) * -(alpha*10)
comfyanonymous's avatar
comfyanonymous committed
228
        center = kernel_size // 2
BlenderNeko's avatar
BlenderNeko committed
229
        kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
comfyanonymous's avatar
comfyanonymous committed
230
231
232
        kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)

        tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
BlenderNeko's avatar
BlenderNeko committed
233
234
        tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
        sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
comfyanonymous's avatar
comfyanonymous committed
235
236
237
238
239
240
        sharpened = sharpened.permute(0, 2, 3, 1)

        result = torch.clamp(sharpened, 0, 1)

        return (result,)

241
class ImageScaleToTotalPixels:
242
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}),
                            }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, megapixels):
        samples = image.movedim(-1,1)
        total = int(megapixels * 1024 * 1024)

        scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)

        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
267
NODE_CLASS_MAPPINGS = {
268
269
270
271
    "ImageBlend": Blend,
    "ImageBlur": Blur,
    "ImageQuantize": Quantize,
    "ImageSharpen": Sharpen,
272
    "ImageScaleToTotalPixels": ImageScaleToTotalPixels,
comfyanonymous's avatar
comfyanonymous committed
273
}