nodes.py 11.8 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
comfyanonymous's avatar
comfyanonymous committed
7
import copy
comfyanonymous's avatar
comfyanonymous committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

sys.path.append(os.path.join(sys.path[0], "comfy"))


import comfy.samplers
import comfy.sd

supported_ckpt_extensions = ['.ckpt']
try:
    import safetensors.torch
    supported_ckpt_extensions += ['.safetensors']
except:
    print("Could not import safetensors, safetensors support disabled.")

def filter_files_extensions(files, extensions):
    return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files)))

class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
32
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
33
34
35
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

36
37
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
38
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
39
40
41
42
43
44
45
46
47
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

48
49
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "width": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

66
67
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
68
69
70
71
72
73
74
75
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
        c = copy.deepcopy(conditioning)
        for t in c:
            t[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            t[1]['strength'] = strength
            t[1]['min_sigma'] = min_sigma
            t[1]['max_sigma'] = max_sigma
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
76
77
78
79
80
81
82
83
84
85
86

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

87
88
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
89
90
91
92
93
94
95
96
97
98
99
100
101
    def decode(self, vae, samples):
        return (vae.decode(samples), )

class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

102
103
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
104
    def encode(self, vae, pixels):
105
106
107
108
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
comfyanonymous's avatar
comfyanonymous committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        return (vae.encode(pixels), )

class CheckpointLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    config_dir = os.path.join(models_dir, "configs")
    ckpt_dir = os.path.join(models_dir, "checkpoints")

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "config_name": (filter_files_extensions(os.listdir(s.config_dir), '.yaml'), ),
                              "ckpt_name": (filter_files_extensions(os.listdir(s.ckpt_dir), supported_ckpt_extensions), )}}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

123
124
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
        config_path = os.path.join(self.config_dir, config_name)
        ckpt_path = os.path.join(self.ckpt_dir, ckpt_name)
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True)

class VAELoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    vae_dir = os.path.join(models_dir, "vae")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "vae_name": (filter_files_extensions(os.listdir(s.vae_dir), supported_ckpt_extensions), )}}
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

139
140
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    #TODO: scale factor?
    def load_vae(self, vae_name):
        vae_path = os.path.join(self.vae_dir, vae_name)
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

159
160
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
161
162
163
164
165
166
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
        return (latent, )

class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
167
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
168
169
170
171
172

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
173
174
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
175
176
177
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

178
179
    CATEGORY = "latent"

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    def upscale(self, samples, upscale_method, width, height, crop):
        if crop == "center":
            old_width = samples.shape[3]
            old_height = samples.shape[2]
            old_aspect = old_width / old_height
            new_aspect = width / height
            x = 0
            y = 0
            if old_aspect > new_aspect:
                x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
            elif old_aspect < new_aspect:
                y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
            s = samples[:,:,y:old_height-y,x:old_width-x]
        else:
            s = samples
        s = torch.nn.functional.interpolate(s, size=(height // 8, width // 8), mode=upscale_method)
comfyanonymous's avatar
comfyanonymous committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        return (s,)

class KSampler:
    def __init__(self, device="cuda"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

220
221
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
222
223
224
225
226
227
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")
        model = model.to(self.device)
        noise = noise.to(self.device)
        latent_image = latent_image.to(self.device)

comfyanonymous's avatar
comfyanonymous committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        positive_copy = []
        negative_copy = []

        for p in positive:
            t = p[0]
            if t.shape[0] < noise.shape[0]:
                t = torch.cat([t] * noise.shape[0])
            t = t.to(self.device)
            positive_copy += [[t] + p[1:]]
        for n in negative:
            t = n[0]
            if t.shape[0] < noise.shape[0]:
                t = torch.cat([t] * noise.shape[0])
            t = t.to(self.device)
            negative_copy += [[t] + n[1:]]
comfyanonymous's avatar
comfyanonymous committed
243
244
245
246
247
248
249

        if sampler_name in comfy.samplers.KSampler.SAMPLERS:
            sampler = comfy.samplers.KSampler(model, steps=steps, device=self.device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
        else:
            #other samplers
            pass

comfyanonymous's avatar
comfyanonymous committed
250
        samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image)
comfyanonymous's avatar
comfyanonymous committed
251
252
253
254
255
256
257
258
259
260
261
262
        samples = samples.cpu()
        model = model.cpu()
        return (samples, )


class SaveImage:
    def __init__(self):
        self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
263
264
                    {"images": ("IMAGE", ),
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
comfyanonymous's avatar
comfyanonymous committed
265
266
267
268
269
270
271
272
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

273
274
    CATEGORY = "image"

275
276
277
278
279
280
281
282
283
284
285
286
287
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
        def map_filename(filename):
            prefix_len = len(filename_prefix)
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
        try:
            counter = max(filter(lambda a: a[1][:-1] == filename_prefix and a[1][-1] == "_", map(map_filename, os.listdir(self.output_dir))))[0] + 1
        except ValueError:
            counter = 1
comfyanonymous's avatar
comfyanonymous committed
288
289
290
291
292
293
294
295
296
        for image in images:
            i = 255. * image.cpu().numpy()
            img = Image.fromarray(i.astype(np.uint8))
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
297
298
            img.save(f"output/{filename_prefix}_{counter:05}_.png", pnginfo=metadata, optimize=True)
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
299

300
301
302
303
304
305
306
class LoadImage:
    input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"image": (os.listdir(s.input_dir), )},
                }
307
308

    CATEGORY = "image"
309
310
311
312
313
314
315
316
317
318

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "load_image"
    def load_image(self, image):
        image_path = os.path.join(self.input_dir, image)
        image = Image.open(image_path).convert("RGB")
        image = np.array(image).astype(np.float32) / 255.0
        image = torch.from_numpy(image[None])[None,]
        return image

319
320
321
322
323
324
325
326
    @classmethod
    def IS_CHANGED(s, image):
        image_path = os.path.join(s.input_dir, image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

327

comfyanonymous's avatar
comfyanonymous committed
328
329
330
331
332
333
334
335
336
337
338

NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
    "CheckpointLoader": CheckpointLoader,
    "CLIPTextEncode": CLIPTextEncode,
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
    "SaveImage": SaveImage,
comfyanonymous's avatar
comfyanonymous committed
339
340
341
    "LoadImage": LoadImage,
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
comfyanonymous's avatar
comfyanonymous committed
342
343
344
}