model_patcher.py 20.4 KB
Newer Older
1
2
3
import torch
import copy
import inspect
4
import logging
5
import uuid
6
7

import comfy.utils
8
import comfy.model_management
9

10
11
12
13
14
15
16
17
18
19
20
21
def apply_weight_decompose(dora_scale, weight):
    weight_norm = (
        weight.transpose(0, 1)
        .reshape(weight.shape[1], -1)
        .norm(dim=1, keepdim=True)
        .reshape(weight.shape[1], *[1] * (weight.dim() - 1))
        .transpose(0, 1)
    )

    return weight * (dora_scale / weight_norm)


22
class ModelPatcher:
23
    def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False):
24
25
26
27
        self.size = size
        self.model = model
        self.patches = {}
        self.backup = {}
28
29
        self.object_patches = {}
        self.object_patches_backup = {}
30
31
32
33
34
35
36
37
38
        self.model_options = {"transformer_options":{}}
        self.model_size()
        self.load_device = load_device
        self.offload_device = offload_device
        if current_device is None:
            self.current_device = self.offload_device
        else:
            self.current_device = current_device

39
        self.weight_inplace_update = weight_inplace_update
40
        self.model_lowvram = False
41
        self.patches_uuid = uuid.uuid4()
42

43
44
45
46
    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
47
        self.size = comfy.model_management.module_size(self.model)
48
        self.model_keys = set(model_sd.keys())
49
        return self.size
50
51

    def clone(self):
comfyanonymous's avatar
comfyanonymous committed
52
        n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update)
53
54
55
        n.patches = {}
        for k in self.patches:
            n.patches[k] = self.patches[k][:]
56
        n.patches_uuid = self.patches_uuid
57

58
        n.object_patches = self.object_patches.copy()
59
60
        n.model_options = copy.deepcopy(self.model_options)
        n.model_keys = self.model_keys
61
62
        n.backup = self.backup
        n.object_patches_backup = self.object_patches_backup
63
64
65
66
67
68
69
        return n

    def is_clone(self, other):
        if hasattr(other, 'model') and self.model is other.model:
            return True
        return False

70
71
72
73
74
75
76
77
78
79
80
81
82
    def clone_has_same_weights(self, clone):
        if not self.is_clone(clone):
            return False

        if len(self.patches) == 0 and len(clone.patches) == 0:
            return True

        if self.patches_uuid == clone.patches_uuid:
            if len(self.patches) != len(clone.patches):
                logging.warning("WARNING: something went wrong, same patch uuid but different length of patches.")
            else:
                return True

83
84
85
    def memory_required(self, input_shape):
        return self.model.memory_required(input_shape=input_shape)

86
    def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False):
87
88
89
90
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
91
92
        if disable_cfg1_optimization:
            self.model_options["disable_cfg1_optimization"] = True
93

94
    def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
95
        self.model_options["sampler_post_cfg_function"] = self.model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
96
97
        if disable_cfg1_optimization:
            self.model_options["disable_cfg1_optimization"] = True
98

99
100
101
    def set_model_unet_function_wrapper(self, unet_wrapper_function):
        self.model_options["model_function_wrapper"] = unet_wrapper_function

102
103
104
    def set_model_denoise_mask_function(self, denoise_mask_function):
        self.model_options["denoise_mask_function"] = denoise_mask_function

105
106
107
108
109
110
    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

111
    def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None):
112
113
114
115
116
        to = self.model_options["transformer_options"]
        if "patches_replace" not in to:
            to["patches_replace"] = {}
        if name not in to["patches_replace"]:
            to["patches_replace"][name] = {}
117
118
119
120
121
        if transformer_index is not None:
            block = (block_name, number, transformer_index)
        else:
            block = (block_name, number)
        to["patches_replace"][name][block] = patch
122
123
124
125
126
127
128

    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

129
130
    def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None):
        self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index)
131

132
133
    def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None):
        self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index)
134
135
136
137
138
139
140

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

141
142
143
    def set_model_input_block_patch(self, patch):
        self.set_model_patch(patch, "input_block_patch")

144
145
146
    def set_model_input_block_patch_after_skip(self, patch):
        self.set_model_patch(patch, "input_block_patch_after_skip")

147
148
149
    def set_model_output_block_patch(self, patch):
        self.set_model_patch(patch, "output_block_patch")

150
151
152
    def add_object_patch(self, name, obj):
        self.object_patches[name] = obj

153
154
155
156
    def get_model_object(self, name):
        if name in self.object_patches:
            return self.object_patches[name]
        else:
157
158
159
160
            if name in self.object_patches_backup:
                return self.object_patches_backup[name]
            else:
                return comfy.utils.get_attr(self.model, name)
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
178
179
        if "model_function_wrapper" in self.model_options:
            wrap_func = self.model_options["model_function_wrapper"]
180
            if hasattr(wrap_func, "to"):
181
                self.model_options["model_function_wrapper"] = wrap_func.to(device)
182
183
184
185
186
187
188
189
190
191
192
193
194
195

    def model_dtype(self):
        if hasattr(self.model, "get_dtype"):
            return self.model.get_dtype()

    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
        p = set()
        for k in patches:
            if k in self.model_keys:
                p.add(k)
                current_patches = self.patches.get(k, [])
                current_patches.append((strength_patch, patches[k], strength_model))
                self.patches[k] = current_patches

196
        self.patches_uuid = uuid.uuid4()
197
198
199
        return list(p)

    def get_key_patches(self, filter_prefix=None):
comfyanonymous's avatar
comfyanonymous committed
200
        comfy.model_management.unload_model_clones(self)
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        model_sd = self.model_state_dict()
        p = {}
        for k in model_sd:
            if filter_prefix is not None:
                if not k.startswith(filter_prefix):
                    continue
            if k in self.patches:
                p[k] = [model_sd[k]] + self.patches[k]
            else:
                p[k] = (model_sd[k],)
        return p

    def model_state_dict(self, filter_prefix=None):
        sd = self.model.state_dict()
        keys = list(sd.keys())
        if filter_prefix is not None:
            for k in keys:
                if not k.startswith(filter_prefix):
                    sd.pop(k)
        return sd

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    def patch_weight_to_device(self, key, device_to=None):
        if key not in self.patches:
            return

        weight = comfy.utils.get_attr(self.model, key)

        inplace_update = self.weight_inplace_update

        if key not in self.backup:
            self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update)

        if device_to is not None:
            temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
        else:
            temp_weight = weight.to(torch.float32, copy=True)
        out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
        if inplace_update:
            comfy.utils.copy_to_param(self.model, key, out_weight)
        else:
            comfy.utils.set_attr_param(self.model, key, out_weight)

243
    def patch_model(self, device_to=None, patch_weights=True):
244
        for k in self.object_patches:
245
            old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
246
247
248
            if k not in self.object_patches_backup:
                self.object_patches_backup[k] = old

249
250
251
252
        if patch_weights:
            model_sd = self.model_state_dict()
            for key in self.patches:
                if key not in model_sd:
253
                    logging.warning("could not patch. key doesn't exist in model: {}".format(key))
254
                    continue
255

256
                self.patch_weight_to_device(key, device_to)
257

258
259
260
            if device_to is not None:
                self.model.to(device_to)
                self.current_device = device_to
261
262
263

        return self.model

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    def patch_model_lowvram(self, device_to=None, lowvram_model_memory=0):
        self.patch_model(device_to, patch_weights=False)

        logging.info("loading in lowvram mode {}".format(lowvram_model_memory/(1024 * 1024)))
        class LowVramPatch:
            def __init__(self, key, model_patcher):
                self.key = key
                self.model_patcher = model_patcher
            def __call__(self, weight):
                return self.model_patcher.calculate_weight(self.model_patcher.patches[self.key], weight, self.key)

        mem_counter = 0
        for n, m in self.model.named_modules():
            lowvram_weight = False
            if hasattr(m, "comfy_cast_weights"):
                module_mem = comfy.model_management.module_size(m)
                if mem_counter + module_mem >= lowvram_model_memory:
                    lowvram_weight = True

            weight_key = "{}.weight".format(n)
            bias_key = "{}.bias".format(n)

            if lowvram_weight:
                if weight_key in self.patches:
                    m.weight_function = LowVramPatch(weight_key, self)
                if bias_key in self.patches:
                    m.bias_function = LowVramPatch(weight_key, self)

                m.prev_comfy_cast_weights = m.comfy_cast_weights
                m.comfy_cast_weights = True
            else:
                if hasattr(m, "weight"):
                    self.patch_weight_to_device(weight_key, device_to)
                    self.patch_weight_to_device(bias_key, device_to)
                    m.to(device_to)
                    mem_counter += comfy.model_management.module_size(m)
                    logging.debug("lowvram: loaded module regularly {}".format(m))

        self.model_lowvram = True
        return self.model

305
306
307
308
309
310
311
312
313
314
315
316
317
    def calculate_weight(self, patches, weight, key):
        for p in patches:
            alpha = p[0]
            v = p[1]
            strength_model = p[2]

            if strength_model != 1.0:
                weight *= strength_model

            if isinstance(v, list):
                v = (self.calculate_weight(v[1:], v[0].clone(), key), )

            if len(v) == 1:
comfyanonymous's avatar
comfyanonymous committed
318
319
320
321
322
323
                patch_type = "diff"
            elif len(v) == 2:
                patch_type = v[0]
                v = v[1]

            if patch_type == "diff":
324
325
326
                w1 = v[0]
                if alpha != 0.0:
                    if w1.shape != weight.shape:
327
                        logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
328
                    else:
329
                        weight += alpha * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype)
comfyanonymous's avatar
comfyanonymous committed
330
            elif patch_type == "lora": #lora/locon
331
332
                mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
                mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
333
                dora_scale = v[4]
334
335
336
337
                if v[2] is not None:
                    alpha *= v[2] / mat2.shape[0]
                if v[3] is not None:
                    #locon mid weights, hopefully the math is fine because I didn't properly test it
338
                    mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32)
339
340
341
342
                    final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
                    mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
                try:
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype)
343
344
                    if dora_scale is not None:
                        weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight)
345
                except Exception as e:
346
                    logging.error("ERROR {} {} {}".format(patch_type, key, e))
comfyanonymous's avatar
comfyanonymous committed
347
            elif patch_type == "lokr":
348
349
350
351
352
353
354
                w1 = v[0]
                w2 = v[1]
                w1_a = v[3]
                w1_b = v[4]
                w2_a = v[5]
                w2_b = v[6]
                t2 = v[7]
355
                dora_scale = v[8]
356
357
358
359
                dim = None

                if w1 is None:
                    dim = w1_b.shape[0]
360
361
                    w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32),
                                  comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32))
362
                else:
363
                    w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32)
364
365
366
367

                if w2 is None:
                    dim = w2_b.shape[0]
                    if t2 is None:
368
369
                        w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32))
370
                    else:
371
372
373
374
                        w2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                          comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
                                          comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32),
                                          comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32))
375
                else:
376
                    w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32)
377
378
379
380
381
382
383
384

                if len(w2.shape) == 4:
                    w1 = w1.unsqueeze(2).unsqueeze(2)
                if v[2] is not None and dim is not None:
                    alpha *= v[2] / dim

                try:
                    weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
385
386
                    if dora_scale is not None:
                        weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight)
387
                except Exception as e:
388
                    logging.error("ERROR {} {} {}".format(patch_type, key, e))
comfyanonymous's avatar
comfyanonymous committed
389
            elif patch_type == "loha":
390
391
392
393
394
395
                w1a = v[0]
                w1b = v[1]
                if v[2] is not None:
                    alpha *= v[2] / w1b.shape[0]
                w2a = v[3]
                w2b = v[4]
396
                dora_scale = v[7]
397
398
399
                if v[5] is not None: #cp decomposition
                    t1 = v[5]
                    t2 = v[6]
400
401
402
403
404
405
406
407
408
                    m1 = torch.einsum('i j k l, j r, i p -> p r k l',
                                      comfy.model_management.cast_to_device(t1, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w1b, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w1a, weight.device, torch.float32))

                    m2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                      comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w2b, weight.device, torch.float32),
                                      comfy.model_management.cast_to_device(w2a, weight.device, torch.float32))
409
                else:
410
411
412
413
                    m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32),
                                  comfy.model_management.cast_to_device(w1b, weight.device, torch.float32))
                    m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32),
                                  comfy.model_management.cast_to_device(w2b, weight.device, torch.float32))
414
415
416

                try:
                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
417
418
                    if dora_scale is not None:
                        weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight)
419
                except Exception as e:
420
                    logging.error("ERROR {} {} {}".format(patch_type, key, e))
comfyanonymous's avatar
comfyanonymous committed
421
422
423
424
            elif patch_type == "glora":
                if v[4] is not None:
                    alpha *= v[4] / v[0].shape[0]

425
426
                dora_scale = v[5]

comfyanonymous's avatar
comfyanonymous committed
427
428
429
430
431
                a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32)
                a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32)
                b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
                b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)

432
433
                try:
                    weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype)
434
435
                    if dora_scale is not None:
                        weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight)
436
437
                except Exception as e:
                    logging.error("ERROR {} {} {}".format(patch_type, key, e))
comfyanonymous's avatar
comfyanonymous committed
438
            else:
439
                logging.warning("patch type not recognized {} {}".format(patch_type, key))
440
441
442

        return weight

443
444
445
446
447
448
449
450
451
    def unpatch_model(self, device_to=None, unpatch_weights=True):
        if unpatch_weights:
            if self.model_lowvram:
                for m in self.model.modules():
                    if hasattr(m, "prev_comfy_cast_weights"):
                        m.comfy_cast_weights = m.prev_comfy_cast_weights
                        del m.prev_comfy_cast_weights
                    m.weight_function = None
                    m.bias_function = None
452

453
                self.model_lowvram = False
454

455
            keys = list(self.backup.keys())
456

457
458
459
460
461
462
            if self.weight_inplace_update:
                for k in keys:
                    comfy.utils.copy_to_param(self.model, k, self.backup[k])
            else:
                for k in keys:
                    comfy.utils.set_attr_param(self.model, k, self.backup[k])
463

464
            self.backup.clear()
465

466
467
468
            if device_to is not None:
                self.model.to(device_to)
                self.current_device = device_to
469
470
471

        keys = list(self.object_patches_backup.keys())
        for k in keys:
472
            comfy.utils.set_attr(self.model, k, self.object_patches_backup[k])
473
474

        self.object_patches_backup = {}