nodes_mask.py 11.9 KB
Newer Older
1
import numpy as np
2
import scipy.ndimage
3
import torch
4
import comfy.utils
5
6
7

from nodes import MAX_RESOLUTION

8
9
10
11
def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False):
    if resize_source:
        source = torch.nn.functional.interpolate(source, size=(destination.shape[2], destination.shape[3]), mode="bilinear")

12
13
    source = comfy.utils.repeat_to_batch_size(source, destination.shape[0])

14
15
16
17
18
19
20
21
22
23
    x = max(-source.shape[3] * multiplier, min(x, destination.shape[3] * multiplier))
    y = max(-source.shape[2] * multiplier, min(y, destination.shape[2] * multiplier))

    left, top = (x // multiplier, y // multiplier)
    right, bottom = (left + source.shape[3], top + source.shape[2],)

    if mask is None:
        mask = torch.ones_like(source)
    else:
        mask = mask.clone()
24
25
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(source.shape[2], source.shape[3]), mode="bilinear")
        mask = comfy.utils.repeat_to_batch_size(mask, source.shape[0])
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

    # calculate the bounds of the source that will be overlapping the destination
    # this prevents the source trying to overwrite latent pixels that are out of bounds
    # of the destination
    visible_width, visible_height = (destination.shape[3] - left + min(0, x), destination.shape[2] - top + min(0, y),)

    mask = mask[:, :, :visible_height, :visible_width]
    inverse_mask = torch.ones_like(mask) - mask

    source_portion = mask * source[:, :, :visible_height, :visible_width]
    destination_portion = inverse_mask  * destination[:, :, top:bottom, left:right]

    destination[:, :, top:bottom, left:right] = source_portion + destination_portion
    return destination

41
42
43
44
45
46
47
class LatentCompositeMasked:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "destination": ("LATENT",),
                "source": ("LATENT",),
48
49
                "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
50
                "resize_source": ("BOOLEAN", {"default": False}),
51
52
53
54
55
56
57
58
59
60
            },
            "optional": {
                "mask": ("MASK",),
            }
        }
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

61
    def composite(self, destination, source, x, y, resize_source, mask = None):
62
63
64
        output = destination.copy()
        destination = destination["samples"].clone()
        source = source["samples"]
65
        output["samples"] = composite(destination, source, x, y, mask, 8, resize_source)
66
        return (output,)
67

68
69
70
71
72
73
74
75
76
class ImageCompositeMasked:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "destination": ("IMAGE",),
                "source": ("IMAGE",),
                "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
77
                "resize_source": ("BOOLEAN", {"default": False}),
78
79
80
81
82
83
84
            },
            "optional": {
                "mask": ("MASK",),
            }
        }
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "composite"
85

86
    CATEGORY = "image"
87

88
    def composite(self, destination, source, x, y, resize_source, mask = None):
89
        destination = destination.clone().movedim(-1, 1)
90
        output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
91
92
93
94
        return (output,)

class MaskToImage:
    @classmethod
95
    def INPUT_TYPES(s):
96
        return {
97
98
99
                "required": {
                    "mask": ("MASK",),
                }
100
101
102
103
104
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("IMAGE",)
105
106
107
    FUNCTION = "mask_to_image"

    def mask_to_image(self, mask):
108
        result = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
109
110
111
112
113
114
115
116
117
118
119
        return (result,)

class ImageToMask:
    @classmethod
    def INPUT_TYPES(s):
        return {
                "required": {
                    "image": ("IMAGE",),
                    "channel": (["red", "green", "blue"],),
                }
        }
120

121
    CATEGORY = "mask"
122

123
124
    RETURN_TYPES = ("MASK",)
    FUNCTION = "image_to_mask"
125

126
127
    def image_to_mask(self, image, channel):
        channels = ["red", "green", "blue"]
128
        mask = image[:, :, :, channels.index(channel)]
129
        return (mask,)
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
class ImageColorToMask:
    @classmethod
    def INPUT_TYPES(s):
        return {
                "required": {
                    "image": ("IMAGE",),
                    "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
                }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)
    FUNCTION = "image_to_mask"

    def image_to_mask(self, image, color):
147
148
        temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int)
        temp = torch.bitwise_left_shift(temp[:,:,:,0], 16) + torch.bitwise_left_shift(temp[:,:,:,1], 8) + temp[:,:,:,2]
149
150
151
        mask = torch.where(temp == color, 255, 0).float()
        return (mask,)

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
class SolidMask:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
            }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "solid"

    def solid(self, value, width, height):
170
        out = torch.full((1, height, width), value, dtype=torch.float32, device="cpu")
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        return (out,)

class InvertMask:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "mask": ("MASK",),
            }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "invert"

    def invert(self, mask):
        out = 1.0 - mask
        return (out,)

class CropMask:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "mask": ("MASK",),
                "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
            }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "crop"

    def crop(self, mask, x, y, width, height):
212
213
        mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
        out = mask[:, y:y + height, x:x + width]
214
215
216
217
218
219
220
221
222
223
224
        return (out,)

class MaskComposite:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "destination": ("MASK",),
                "source": ("MASK",),
                "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
space-nuko's avatar
space-nuko committed
225
                "operation": (["multiply", "add", "subtract", "and", "or", "xor"],),
226
227
228
229
230
231
232
233
234
235
            }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "combine"

    def combine(self, destination, source, x, y, operation):
236
237
        output = destination.reshape((-1, destination.shape[-2], destination.shape[-1])).clone()
        source = source.reshape((-1, source.shape[-2], source.shape[-1]))
238
239

        left, top = (x, y,)
240
        right, bottom = (min(left + source.shape[-1], destination.shape[-1]), min(top + source.shape[-2], destination.shape[-2]))
241
242
243
244
245
        visible_width, visible_height = (right - left, bottom - top,)

        source_portion = source[:visible_height, :visible_width]
        destination_portion = destination[top:bottom, left:right]

comfyanonymous's avatar
comfyanonymous committed
246
        if operation == "multiply":
247
            output[:, top:bottom, left:right] = destination_portion * source_portion
comfyanonymous's avatar
comfyanonymous committed
248
        elif operation == "add":
249
            output[:, top:bottom, left:right] = destination_portion + source_portion
comfyanonymous's avatar
comfyanonymous committed
250
        elif operation == "subtract":
251
            output[:, top:bottom, left:right] = destination_portion - source_portion
space-nuko's avatar
space-nuko committed
252
        elif operation == "and":
253
            output[:, top:bottom, left:right] = torch.bitwise_and(destination_portion.round().bool(), source_portion.round().bool()).float()
space-nuko's avatar
space-nuko committed
254
        elif operation == "or":
255
            output[:, top:bottom, left:right] = torch.bitwise_or(destination_portion.round().bool(), source_portion.round().bool()).float()
space-nuko's avatar
space-nuko committed
256
        elif operation == "xor":
257
            output[:, top:bottom, left:right] = torch.bitwise_xor(destination_portion.round().bool(), source_portion.round().bool()).float()
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

        output = torch.clamp(output, 0.0, 1.0)

        return (output,)

class FeatherMask:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "mask": ("MASK",),
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
            }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "feather"

    def feather(self, mask, left, top, right, bottom):
283
        output = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).clone()
284
285
286
287
288
289
290
291

        left = min(left, output.shape[1])
        right = min(right, output.shape[1])
        top = min(top, output.shape[0])
        bottom = min(bottom, output.shape[0])

        for x in range(left):
            feather_rate = (x + 1.0) / left
292
            output[:, :, x] *= feather_rate
293
294
295

        for x in range(right):
            feather_rate = (x + 1) / right
296
            output[:, :, -x] *= feather_rate
297
298
299

        for y in range(top):
            feather_rate = (y + 1) / top
300
            output[:, y, :] *= feather_rate
301
302
303

        for y in range(bottom):
            feather_rate = (y + 1) / bottom
304
            output[:, -y, :] *= feather_rate
305
306

        return (output,)
307
308
309
310
311
312
313
    
class GrowMask:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "mask": ("MASK",),
314
                "expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}),
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
                "tapered_corners": ("BOOLEAN", {"default": True}),
            },
        }
    
    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "expand_mask"

    def expand_mask(self, mask, expand, tapered_corners):
        c = 0 if tapered_corners else 1
        kernel = np.array([[c, 1, c],
                           [1, 1, 1],
                           [c, 1, c]])
330
331
332
333
334
335
336
337
338
339
340
341
342
        mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
        out = []
        for m in mask:
            output = m.numpy()
            while expand < 0:
                output = scipy.ndimage.grey_erosion(output, footprint=kernel)
                expand += 1
            while expand > 0:
                output = scipy.ndimage.grey_dilation(output, footprint=kernel)
                expand -= 1
            output = torch.from_numpy(output)
            out.append(output)
        return (torch.cat(out, dim=0),)
343
344
345
346
347



NODE_CLASS_MAPPINGS = {
    "LatentCompositeMasked": LatentCompositeMasked,
348
    "ImageCompositeMasked": ImageCompositeMasked,
349
    "MaskToImage": MaskToImage,
350
    "ImageToMask": ImageToMask,
351
    "ImageColorToMask": ImageColorToMask,
352
353
354
355
356
    "SolidMask": SolidMask,
    "InvertMask": InvertMask,
    "CropMask": CropMask,
    "MaskComposite": MaskComposite,
    "FeatherMask": FeatherMask,
357
    "GrowMask": GrowMask,
358
359
}

360
361
362
363
NODE_DISPLAY_NAME_MAPPINGS = {
    "ImageToMask": "Convert Image to Mask",
    "MaskToImage": "Convert Mask to Image",
}