nodes_mask.py 11.3 KB
Newer Older
1
2
import numpy as np
from scipy.ndimage import grey_dilation
3
import torch
4
import comfy.utils
5
6
7

from nodes import MAX_RESOLUTION

8
9
10
11
def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False):
    if resize_source:
        source = torch.nn.functional.interpolate(source, size=(destination.shape[2], destination.shape[3]), mode="bilinear")

12
13
    source = comfy.utils.repeat_to_batch_size(source, destination.shape[0])

14
15
16
17
18
19
20
21
22
23
    x = max(-source.shape[3] * multiplier, min(x, destination.shape[3] * multiplier))
    y = max(-source.shape[2] * multiplier, min(y, destination.shape[2] * multiplier))

    left, top = (x // multiplier, y // multiplier)
    right, bottom = (left + source.shape[3], top + source.shape[2],)

    if mask is None:
        mask = torch.ones_like(source)
    else:
        mask = mask.clone()
24
25
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(source.shape[2], source.shape[3]), mode="bilinear")
        mask = comfy.utils.repeat_to_batch_size(mask, source.shape[0])
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

    # calculate the bounds of the source that will be overlapping the destination
    # this prevents the source trying to overwrite latent pixels that are out of bounds
    # of the destination
    visible_width, visible_height = (destination.shape[3] - left + min(0, x), destination.shape[2] - top + min(0, y),)

    mask = mask[:, :, :visible_height, :visible_width]
    inverse_mask = torch.ones_like(mask) - mask

    source_portion = mask * source[:, :, :visible_height, :visible_width]
    destination_portion = inverse_mask  * destination[:, :, top:bottom, left:right]

    destination[:, :, top:bottom, left:right] = source_portion + destination_portion
    return destination

41
42
43
44
45
46
47
class LatentCompositeMasked:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "destination": ("LATENT",),
                "source": ("LATENT",),
48
49
                "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
50
                "resize_source": ("BOOLEAN", {"default": False}),
51
52
53
54
55
56
57
58
59
60
            },
            "optional": {
                "mask": ("MASK",),
            }
        }
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

61
    def composite(self, destination, source, x, y, resize_source, mask = None):
62
63
64
        output = destination.copy()
        destination = destination["samples"].clone()
        source = source["samples"]
65
        output["samples"] = composite(destination, source, x, y, mask, 8, resize_source)
66
        return (output,)
67

68
69
70
71
72
73
74
75
76
class ImageCompositeMasked:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "destination": ("IMAGE",),
                "source": ("IMAGE",),
                "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
77
                "resize_source": ("BOOLEAN", {"default": False}),
78
79
80
81
82
83
84
            },
            "optional": {
                "mask": ("MASK",),
            }
        }
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "composite"
85

86
    CATEGORY = "image"
87

88
    def composite(self, destination, source, x, y, resize_source, mask = None):
89
        destination = destination.clone().movedim(-1, 1)
90
        output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
91
92
93
94
        return (output,)

class MaskToImage:
    @classmethod
95
    def INPUT_TYPES(s):
96
        return {
97
98
99
                "required": {
                    "mask": ("MASK",),
                }
100
101
102
103
104
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("IMAGE",)
105
106
107
    FUNCTION = "mask_to_image"

    def mask_to_image(self, mask):
108
        result = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
109
110
111
112
113
114
115
116
117
118
119
        return (result,)

class ImageToMask:
    @classmethod
    def INPUT_TYPES(s):
        return {
                "required": {
                    "image": ("IMAGE",),
                    "channel": (["red", "green", "blue"],),
                }
        }
120

121
    CATEGORY = "mask"
122

123
124
    RETURN_TYPES = ("MASK",)
    FUNCTION = "image_to_mask"
125

126
127
    def image_to_mask(self, image, channel):
        channels = ["red", "green", "blue"]
128
        mask = image[:, :, :, channels.index(channel)]
129
        return (mask,)
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
class ImageColorToMask:
    @classmethod
    def INPUT_TYPES(s):
        return {
                "required": {
                    "image": ("IMAGE",),
                    "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
                }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)
    FUNCTION = "image_to_mask"

    def image_to_mask(self, image, color):
        temp = (torch.clamp(image[0], 0, 1.0) * 255.0).round().to(torch.int)
        temp = torch.bitwise_left_shift(temp[:,:,0], 16) + torch.bitwise_left_shift(temp[:,:,1], 8) + temp[:,:,2]
        mask = torch.where(temp == color, 255, 0).float()
        return (mask,)

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
class SolidMask:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
            }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "solid"

    def solid(self, value, width, height):
        out = torch.full((height, width), value, dtype=torch.float32, device="cpu")
        return (out,)

class InvertMask:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "mask": ("MASK",),
            }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "invert"

    def invert(self, mask):
        out = 1.0 - mask
        return (out,)

class CropMask:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "mask": ("MASK",),
                "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
            }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "crop"

    def crop(self, mask, x, y, width, height):
        out = mask[y:y + height, x:x + width]
        return (out,)

class MaskComposite:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "destination": ("MASK",),
                "source": ("MASK",),
                "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
space-nuko's avatar
space-nuko committed
224
                "operation": (["multiply", "add", "subtract", "and", "or", "xor"],),
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
            }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "combine"

    def combine(self, destination, source, x, y, operation):
        output = destination.clone()

        left, top = (x, y,)
        right, bottom = (min(left + source.shape[1], destination.shape[1]), min(top + source.shape[0], destination.shape[0]))
        visible_width, visible_height = (right - left, bottom - top,)

        source_portion = source[:visible_height, :visible_width]
        destination_portion = destination[top:bottom, left:right]

comfyanonymous's avatar
comfyanonymous committed
244
245
246
247
248
249
        if operation == "multiply":
            output[top:bottom, left:right] = destination_portion * source_portion
        elif operation == "add":
            output[top:bottom, left:right] = destination_portion + source_portion
        elif operation == "subtract":
            output[top:bottom, left:right] = destination_portion - source_portion
space-nuko's avatar
space-nuko committed
250
        elif operation == "and":
251
            output[top:bottom, left:right] = torch.bitwise_and(destination_portion.round().bool(), source_portion.round().bool()).float()
space-nuko's avatar
space-nuko committed
252
        elif operation == "or":
253
            output[top:bottom, left:right] = torch.bitwise_or(destination_portion.round().bool(), source_portion.round().bool()).float()
space-nuko's avatar
space-nuko committed
254
        elif operation == "xor":
255
            output[top:bottom, left:right] = torch.bitwise_xor(destination_portion.round().bool(), source_portion.round().bool()).float()
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

        output = torch.clamp(output, 0.0, 1.0)

        return (output,)

class FeatherMask:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "mask": ("MASK",),
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
            }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "feather"

    def feather(self, mask, left, top, right, bottom):
        output = mask.clone()

        left = min(left, output.shape[1])
        right = min(right, output.shape[1])
        top = min(top, output.shape[0])
        bottom = min(bottom, output.shape[0])

        for x in range(left):
            feather_rate = (x + 1.0) / left
            output[:, x] *= feather_rate

        for x in range(right):
            feather_rate = (x + 1) / right
            output[:, -x] *= feather_rate

        for y in range(top):
            feather_rate = (y + 1) / top
            output[y, :] *= feather_rate

        for y in range(bottom):
            feather_rate = (y + 1) / bottom
            output[-y, :] *= feather_rate

        return (output,)
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    
class GrowMask:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "mask": ("MASK",),
                "expand": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "tapered_corners": ("BOOLEAN", {"default": True}),
            },
        }
    
    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "expand_mask"

    def expand_mask(self, mask, expand, tapered_corners):
        c = 0 if tapered_corners else 1
        kernel = np.array([[c, 1, c],
                           [1, 1, 1],
                           [c, 1, c]])
        output = mask.numpy().copy()
        while expand > 0:
            output = grey_dilation(output, footprint=kernel)
            expand -= 1
        output = torch.from_numpy(output)
        return (output,)
334
335
336
337
338



NODE_CLASS_MAPPINGS = {
    "LatentCompositeMasked": LatentCompositeMasked,
339
    "ImageCompositeMasked": ImageCompositeMasked,
340
    "MaskToImage": MaskToImage,
341
    "ImageToMask": ImageToMask,
342
    "ImageColorToMask": ImageColorToMask,
343
344
345
346
347
    "SolidMask": SolidMask,
    "InvertMask": InvertMask,
    "CropMask": CropMask,
    "MaskComposite": MaskComposite,
    "FeatherMask": FeatherMask,
348
    "GrowMask": GrowMask,
349
350
}

351
352
353
354
NODE_DISPLAY_NAME_MAPPINGS = {
    "ImageToMask": "Convert Image to Mask",
    "MaskToImage": "Convert Mask to Image",
}