model_base.py 9.35 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import torch
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
5
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
comfyanonymous's avatar
comfyanonymous committed
6
import comfy.model_management
comfyanonymous's avatar
comfyanonymous committed
7
import numpy as np
8
from enum import Enum
9
from . import utils
comfyanonymous's avatar
comfyanonymous committed
10

11
12
13
14
class ModelType(Enum):
    EPS = 1
    V_PREDICTION = 2

comfyanonymous's avatar
comfyanonymous committed
15
class BaseModel(torch.nn.Module):
16
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
comfyanonymous's avatar
comfyanonymous committed
17
18
        super().__init__()

19
20
        unet_config = model_config.unet_config
        self.latent_format = model_config.latent_format
21
        self.model_config = model_config
22
23
24
        self.register_schedule(given_betas=None, beta_schedule=model_config.beta_schedule, timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3)
        if not unet_config.get("disable_unet_model_creation", False):
            self.diffusion_model = UNetModel(**unet_config, device=device)
25
        self.model_type = model_type
26
27
        self.adm_channels = unet_config.get("adm_in_channels", None)
        if self.adm_channels is None:
comfyanonymous's avatar
comfyanonymous committed
28
            self.adm_channels = 0
29
        print("model_type", model_type.name)
comfyanonymous's avatar
comfyanonymous committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
        print("adm", self.adm_channels)

    def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        if given_betas is not None:
            betas = given_betas
        else:
            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
        alphas = 1. - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end

        self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
        self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
        self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))

    def apply_model(self, x, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}):
        if c_concat is not None:
            xc = torch.cat([x] + c_concat, dim=1)
        else:
            xc = x
        context = torch.cat(c_crossattn, 1)
57
58
59
60
61
62
63
        dtype = self.get_dtype()
        xc = xc.to(dtype)
        t = t.to(dtype)
        context = context.to(dtype)
        if c_adm is not None:
            c_adm = c_adm.to(dtype)
        return self.diffusion_model(xc, t, context=context, y=c_adm, control=control, transformer_options=transformer_options).float()
comfyanonymous's avatar
comfyanonymous committed
64
65
66
67
68
69
70

    def get_dtype(self):
        return self.diffusion_model.dtype

    def is_adm(self):
        return self.adm_channels > 0

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    def encode_adm(self, **kwargs):
        return None

    def load_model_weights(self, sd, unet_prefix=""):
        to_load = {}
        keys = list(sd.keys())
        for k in keys:
            if k.startswith(unet_prefix):
                to_load[k[len(unet_prefix):]] = sd.pop(k)

        m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
        if len(m) > 0:
            print("unet missing:", m)

        if len(u) > 0:
            print("unet unexpected:", u)
        del to_load
        return self

90
91
92
93
94
95
    def process_latent_in(self, latent):
        return self.latent_format.process_in(latent)

    def process_latent_out(self, latent):
        return self.latent_format.process_out(latent)

96
97
    def state_dict_for_saving(self, clip_state_dict, vae_state_dict):
        clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict)
comfyanonymous's avatar
comfyanonymous committed
98
99
100
101
102
        unet_sd = self.diffusion_model.state_dict()
        unet_state_dict = {}
        for k in unet_sd:
            unet_state_dict[k] = comfy.model_management.resolve_lowvram_weight(unet_sd[k], self.diffusion_model, k)

103
104
105
106
107
        unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
        vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
        if self.get_dtype() == torch.float16:
            clip_state_dict = utils.convert_sd_to(clip_state_dict, torch.float16)
            vae_state_dict = utils.convert_sd_to(vae_state_dict, torch.float16)
108
109
110
111

        if self.model_type == ModelType.V_PREDICTION:
            unet_state_dict["v_pred"] = torch.tensor([])

112
113
        return {**unet_state_dict, **vae_state_dict, **clip_state_dict}

comfyanonymous's avatar
comfyanonymous committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
    adm_inputs = []
    weights = []
    noise_aug = []
    for unclip_cond in unclip_conditioning:
        for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
            weight = unclip_cond["strength"]
            noise_augment = unclip_cond["noise_augmentation"]
            noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
            c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
            adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
            weights.append(weight)
            noise_aug.append(noise_augment)
            adm_inputs.append(adm_out)

    if len(noise_aug) > 1:
        adm_out = torch.stack(adm_inputs).sum(0)
        noise_augment = noise_augment_merge
        noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
        c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
        adm_out = torch.cat((c_adm, noise_level_emb), 1)

    return adm_out
137

comfyanonymous's avatar
comfyanonymous committed
138
class SD21UNCLIP(BaseModel):
139
140
    def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
        super().__init__(model_config, model_type, device=device)
comfyanonymous's avatar
comfyanonymous committed
141
142
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)

143
144
145
    def encode_adm(self, **kwargs):
        unclip_conditioning = kwargs.get("unclip_conditioning", None)
        device = kwargs["device"]
comfyanonymous's avatar
comfyanonymous committed
146
147
        if unclip_conditioning is None:
            return torch.zeros((1, self.adm_channels))
148
        else:
comfyanonymous's avatar
comfyanonymous committed
149
            return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05))
150
151


comfyanonymous's avatar
comfyanonymous committed
152
class SDInpaint(BaseModel):
153
154
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
comfyanonymous's avatar
comfyanonymous committed
155
        self.concat_keys = ("mask", "masked_image")
156

157
158
159
160
161
162
def sdxl_pooled(args, noise_augmentor):
    if "unclip_conditioning" in args:
        return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor)[:,:1280]
    else:
        return args["pooled_output"]

163
class SDXLRefiner(BaseModel):
164
165
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
166
        self.embedder = Timestep(256)
167
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
168
169

    def encode_adm(self, **kwargs):
170
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
171
172
173
174
175
176
177
178
179
180
181
182
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)

        if kwargs.get("prompt_type", "") == "negative":
            aesthetic_score = kwargs.get("aesthetic_score", 2.5)
        else:
            aesthetic_score = kwargs.get("aesthetic_score", 6)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
comfyanonymous's avatar
comfyanonymous committed
183
        out.append(self.embedder(torch.Tensor([width])))
184
        out.append(self.embedder(torch.Tensor([crop_h])))
comfyanonymous's avatar
comfyanonymous committed
185
        out.append(self.embedder(torch.Tensor([crop_w])))
186
187
188
189
190
        out.append(self.embedder(torch.Tensor([aesthetic_score])))
        flat = torch.flatten(torch.cat(out))[None, ]
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)

class SDXL(BaseModel):
191
192
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
193
        self.embedder = Timestep(256)
194
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
195
196

    def encode_adm(self, **kwargs):
197
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
198
199
200
201
202
203
204
205
206
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)
        target_width = kwargs.get("target_width", width)
        target_height = kwargs.get("target_height", height)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
comfyanonymous's avatar
comfyanonymous committed
207
        out.append(self.embedder(torch.Tensor([width])))
208
        out.append(self.embedder(torch.Tensor([crop_h])))
comfyanonymous's avatar
comfyanonymous committed
209
        out.append(self.embedder(torch.Tensor([crop_w])))
210
        out.append(self.embedder(torch.Tensor([target_height])))
comfyanonymous's avatar
comfyanonymous committed
211
        out.append(self.embedder(torch.Tensor([target_width])))
212
213
        flat = torch.flatten(torch.cat(out))[None, ]
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)