Unverified Commit ef3c2dd0 authored by Stefan He's avatar Stefan He Committed by GitHub
Browse files

Support Online Quantization for W8A8 (#4485)

parent 75b65648
......@@ -9,9 +9,11 @@ from sglang.srt.layers.quantization.base_config import (
QuantizationConfig,
QuantizeMethodBase,
)
from sglang.srt.layers.quantization.fp8_kernel import per_token_group_quant_fp8
from sglang.srt.layers.quantization.fp8_utils import (
apply_fp8_linear,
cutlass_fp8_supported,
input_to_float8,
normalize_e4m3fn_to_e4m3fnuz,
)
from sglang.srt.utils import is_hip
......@@ -22,12 +24,24 @@ _is_hip = is_hip()
class W8A8Fp8Config(QuantizationConfig):
"""Config class for W8A8 FP8 Quantization.
- Weight: static, per-channel, symmetric
- Activation: dynamic, per-token, symmetric
Weight Quantization:
- Method: Static quantization
- Granularity: Per-channel
- Type: Symmetric
Activation Quantization:
- Method: Dynamic quantization
- Granularity: Per-token
- Type: Symmetric
Note:
- For models without offline quantization, weights will be quantized during model loading
- If CUTLASS is supported: Per-channel weight quantization is used
- If CUTLASS is not supported: Falls back to per-token weight quantization
"""
def __init__(self):
pass
def __init__(self, is_checkpoint_fp8_serialized: bool = False):
self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
......@@ -47,7 +61,9 @@ class W8A8Fp8Config(QuantizationConfig):
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "W8A8Fp8Config":
return cls()
quant_method = cls.get_from_keys(config, ["quant_method"])
is_checkpoint_fp8_serialized = "compressed-tensors" in quant_method
return cls(is_checkpoint_fp8_serialized=is_checkpoint_fp8_serialized)
def get_quant_method(
self,
......@@ -72,13 +88,35 @@ class W8A8Fp8LinearMethod(LinearMethodBase):
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
weight = layer.weight
weight_scale = layer.weight_scale.detach()
if _is_hip:
weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
weight=weight, weight_scale=weight_scale
)
layer.weight = Parameter(weight.t(), requires_grad=False)
layer.weight_scale = Parameter(weight_scale, requires_grad=False)
if self.quantization_config.is_checkpoint_fp8_serialized:
weight_scale = layer.weight_scale.detach()
# If checkpoint offline quantized with w8a8_fp8, load the weight and weight_scale directly.
if _is_hip:
weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
weight=weight, weight_scale=weight_scale
)
layer.weight = Parameter(weight.t(), requires_grad=False)
layer.weight_scale = Parameter(weight_scale, requires_grad=False)
else:
# If checkpoint not offline quantized, quantize the weights with per-channel quantization.
if self.cutlass_fp8_supported:
# if cutlass supported, we use cutlass_scaled_mm
# which requires per-channel quantization on weight
qweight, weight_scale = per_token_group_quant_fp8(
layer.weight, layer.weight.shape[-1]
)
weight_scale = weight_scale.t().contiguous()
else:
# if cutlass not supported, we fall back to use torch._scaled_mm
# which requires per tensor quantization on weight
qweight, weight_scale = input_to_float8(layer.weight)
# Update the layer with the new values.
layer.weight = Parameter(qweight.t(), requires_grad=False)
layer.weight_scale = Parameter(weight_scale, requires_grad=False)
layer.input_scale = None
def create_weights(
self,
......@@ -90,6 +128,11 @@ class W8A8Fp8LinearMethod(LinearMethodBase):
params_dtype: torch.dtype,
**extra_weight_attrs
):
weight_dtype = (
torch.float8_e4m3fn
if self.quantization_config.is_checkpoint_fp8_serialized
else params_dtype
)
weight_loader = extra_weight_attrs.get("weight_loader")
self.logical_widths = output_partition_sizes
......@@ -98,7 +141,7 @@ class W8A8Fp8LinearMethod(LinearMethodBase):
data=torch.empty(
sum(output_partition_sizes),
input_size_per_partition,
dtype=torch.float8_e4m3fn,
dtype=weight_dtype,
),
input_dim=1,
output_dim=0,
......@@ -106,12 +149,15 @@ class W8A8Fp8LinearMethod(LinearMethodBase):
)
layer.register_parameter("weight", weight)
weight_scale = ChannelQuantScaleParameter(
data=torch.empty((sum(output_partition_sizes), 1), dtype=torch.float32),
output_dim=0,
weight_loader=weight_loader,
)
layer.register_parameter("weight_scale", weight_scale)
if self.quantization_config.is_checkpoint_fp8_serialized:
weight_scale = ChannelQuantScaleParameter(
data=torch.empty((sum(output_partition_sizes), 1), dtype=torch.float32),
output_dim=0,
weight_loader=weight_loader,
)
layer.register_parameter("weight_scale", weight_scale)
else:
layer.weight_scale = None
def apply(
self,
......
......@@ -6,6 +6,7 @@ from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
DEFAULT_FP8_MODEL_NAME_FOR_ACCURACY_TEST,
DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST,
DEFAULT_MODEL_NAME_FOR_TEST,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
popen_launch_server,
......@@ -40,33 +41,68 @@ class TestEvalFP8Accuracy(unittest.TestCase):
class TestEvalFP8DynamicQuantAccuracy(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST
cls.base_url = DEFAULT_URL_FOR_TEST
cls.process = popen_launch_server(
cls.model,
cls.base_url,
def _run_test(self, model, other_args, expected_score):
base_url = DEFAULT_URL_FOR_TEST
other_args = other_args or []
process = popen_launch_server(
model,
base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=["--quantization", "w8a8_fp8"],
other_args=other_args,
)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
try:
args = SimpleNamespace(
base_url=base_url,
model=model,
eval_name="mmlu",
num_examples=64,
num_threads=32,
temperature=0.1,
)
def test_mmlu(self):
args = SimpleNamespace(
base_url=self.base_url,
model=self.model,
eval_name="mmlu",
num_examples=64,
num_threads=32,
temperature=0.1,
metrics = run_eval(args)
self.assertGreaterEqual(metrics["score"], expected_score)
finally:
kill_process_tree(process.pid)
def test_mmlu_offline_only(self):
"""Test with offline quantization only."""
self._run_test(
model=DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST,
other_args=[],
expected_score=0.64,
)
metrics = run_eval(args)
self.assertGreaterEqual(metrics["score"], 0.70)
def test_mmlu_offline_and_online_override(self):
"""Test with both offline and online quantization."""
self._run_test(
model=DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST,
other_args=["--quantization", "w8a8_fp8"],
# inference will use sgl kernel w/ online quant override
# we observed that the accuracy is higher then offline only
expected_score=0.64,
)
def test_mmlu_online_only(self):
"""Test with online quantization only."""
self._run_test(
model=DEFAULT_MODEL_NAME_FOR_TEST,
# inference will use sgl kernel w/ online quantization only
# we observed that the accuracy is higher then offline only
other_args=["--quantization", "w8a8_fp8"],
expected_score=0.64,
)
def test_mmlu_fp16_baseline(self):
"""Test with unquantized fp16 baseline."""
self._run_test(
model=DEFAULT_MODEL_NAME_FOR_TEST,
other_args=[],
expected_score=0.64,
)
if __name__ == "__main__":
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment