test_patch_torch.py 4.15 KB
Newer Older
1
2
3
4
5
6
7
8
import os
import traceback
import unittest
from typing import Dict, List

import torch
import torch.multiprocessing as mp

9
from sglang.srt.utils.patch_torch import monkey_patch_torch_reductions
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133


class TestReleaseMemoryOccupation(unittest.TestCase):
    def test_monkey_patch_torch_reductions(self):
        mp.set_start_method("spawn", force=True)

        for enable_patch in [False, True]:
            for params in [
                # Same visible devices
                dict(
                    sender_info=dict(
                        visible_devices=[0, 1],
                        tensor_device=1,
                    ),
                    receiver_info=dict(
                        visible_devices=[0, 1],
                        tensor_device=1,
                    ),
                ),
                # Different visible devices
                dict(
                    sender_info=dict(
                        visible_devices=[0, 1],
                        tensor_device=1,
                    ),
                    receiver_info=dict(
                        visible_devices=[1, 0],
                        # If enable patch, this should be fixed, and cuda:1 becomes cuda:0
                        tensor_device=0 if enable_patch else 1,
                    ),
                ),
            ]:
                with self.subTest(f"{enable_patch=} {params=}"):
                    self._test_monkey_patch_torch_reductions_core(
                        enable_patch=enable_patch, **params
                    )

    def _test_monkey_patch_torch_reductions_core(
        self,
        sender_info: Dict,
        receiver_info: Dict,
        enable_patch: bool,
    ):
        print(
            f'test_monkey_patch_torch_reductions_core {os.environ.get("CUDA_VISIBLE_DEVICES")=}'
        )
        cuda_visible_devices_list: List[int] = [
            int(x)
            for x in os.environ.get("CUDA_VISIBLE_DEVICES", "0,1,2,3,4,5,6,7").split(
                ","
            )
        ]

        processes = []
        output_reader, output_writer = mp.Pipe(duplex=False)
        queue = mp.Queue()
        for role, info in [
            ("sender", sender_info),
            ("receiver", receiver_info),
        ]:
            os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
                str(cuda_visible_devices_list[device])
                for device in info["visible_devices"]
            )
            p = mp.Process(
                target=_run_subprocess,
                kwargs=dict(
                    role=role,
                    queue=queue,
                    output_writer=output_writer,
                    tensor_device=info["tensor_device"],
                    enable_patch=enable_patch,
                ),
            )
            p.start()
            processes.append(p)

        for _ in range(len(processes)):
            self.assertTrue(
                output_reader.recv(), f"Subprocess has error, please see logs above."
            )

        for p in processes:
            p.join()


def _run_subprocess(
    role: str, queue: mp.Queue, output_writer, tensor_device: int, enable_patch: bool
):
    print(
        f'subprocess[{role}] start {os.environ.get("CUDA_VISIBLE_DEVICES")=}',
        flush=True,
    )

    if enable_patch:
        print(f"subprocess[{role}] execute monkey_patch_torch_reductions", flush=True)
        monkey_patch_torch_reductions()

    try:
        if role == "sender":
            tensor = torch.tensor([1.0, 2.0], device=f"cuda:{tensor_device}")
            print(f"sender queue.put {tensor=} {tensor.device=}")
            queue.put(tensor)
            assert queue.get() == "done"
        elif role == "receiver":
            tensor = queue.get()
            print(f"receiver queue.get {tensor=} {tensor.device=}")
            assert str(tensor.device) == f"cuda:{tensor_device}"
            queue.put("done")
        else:
            raise NotImplementedError

        execution_ok = True
    except Exception as e:
        print(f"subprocess[{role}] has error: {e}", flush=True)
        traceback.print_exc()
        execution_ok = False

    output_writer.send(execution_ok)
    output_writer.close()


if __name__ == "__main__":
    unittest.main()