Unverified Commit 92bb49a7 authored by fzyzcjy's avatar fzyzcjy Committed by GitHub
Browse files

Patch PyTorch's bug that cross-process tensor transfer will lead to wrong device (#4565)

parent 6f5cc5eb
......@@ -19,6 +19,7 @@ import torch.distributed as dist
from torch.distributed.tensor import DeviceMesh, DTensor
from sglang.srt.model_executor.model_runner import LocalSerializedTensor
from sglang.srt.patch_torch import monkey_patch_torch_reductions
from sglang.srt.server import Engine
from sglang.srt.utils import MultiprocessingSerializer, broadcast_pyobj
......@@ -30,6 +31,7 @@ class VerlEngine:
nnodes: int = 1,
**kwargs,
):
monkey_patch_torch_reductions()
self._device_mesh_cpu = device_mesh_cpu
self._tp_rank = device_mesh_cpu.get_local_rank()
self._tp_size = device_mesh_cpu.size()
......
......@@ -64,6 +64,7 @@ from sglang.srt.model_loader.loader import (
)
from sglang.srt.model_loader.utils import set_default_torch_dtype
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.patch_torch import monkey_patch_torch_reductions
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
from sglang.srt.server_args import ServerArgs
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
......@@ -1082,8 +1083,9 @@ def _model_load_weights_direct(model, named_tensors: List[Tuple[str, torch.Tenso
def _unwrap_tensor(tensor, tp_rank):
if isinstance(tensor, LocalSerializedTensor):
return tensor.get(tp_rank)
return tensor
monkey_patch_torch_reductions()
tensor = tensor.get(tp_rank)
return tensor.to(torch.cuda.current_device())
@dataclass
......
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from typing import Callable, Union
import torch
from torch.multiprocessing import reductions
def monkey_patch_torch_reductions():
"""Monkey patching before Torch https://github.com/pytorch/pytorch/pull/149248 is fixed"""
if hasattr(reductions, "_reduce_tensor_original"):
return
reductions._reduce_tensor_original = reductions.reduce_tensor
reductions._rebuild_cuda_tensor_original = reductions.rebuild_cuda_tensor
reductions.reduce_tensor = _reduce_tensor_modified
reductions.rebuild_cuda_tensor = _rebuild_cuda_tensor_modified
reductions.init_reductions()
# The signature has not been changed for years, and we will not need this when the next version is released,
# so it looks safe to use a constant.
_REDUCE_TENSOR_ARG_DEVICE_INDEX = 6
def _reduce_tensor_modified(*args, **kwargs):
output_fn, output_args = reductions._reduce_tensor_original(*args, **kwargs)
output_args = _modify_tuple(
output_args, _REDUCE_TENSOR_ARG_DEVICE_INDEX, _device_to_uuid
)
return output_fn, output_args
def _rebuild_cuda_tensor_modified(*args):
args = _modify_tuple(args, _REDUCE_TENSOR_ARG_DEVICE_INDEX, _device_from_maybe_uuid)
return reductions._rebuild_cuda_tensor_original(*args)
def _device_to_uuid(device: int) -> str:
return str(torch.cuda.get_device_properties(device).uuid)
def _device_from_maybe_uuid(device_maybe_uuid: Union[int, str]) -> int:
if isinstance(device_maybe_uuid, int):
return device_maybe_uuid
if isinstance(device_maybe_uuid, str):
for device in range(torch.cuda.device_count()):
if str(torch.cuda.get_device_properties(device).uuid) == device_maybe_uuid:
return device
raise Exception("Invalid device_uuid=" + device_maybe_uuid)
raise Exception(f"Unknown type: {device_maybe_uuid=}")
def _modify_tuple(t, index: int, modifier: Callable):
return *t[:index], modifier(t[index]), *t[index + 1 :]
......@@ -46,6 +46,7 @@ suites = {
TestFile("test_openai_server.py", 124),
TestFile("test_penalty.py", 41),
TestFile("test_page_size.py", 60),
TestFile("test_patch_torch.py", 60),
TestFile("test_pytorch_sampling_backend.py", 66),
TestFile("test_radix_attention.py", 167),
TestFile("test_reasoning_content.py", 89),
......
import os
import traceback
import unittest
from typing import Dict, List
import torch
import torch.multiprocessing as mp
from sglang.srt.patch_torch import monkey_patch_torch_reductions
class TestReleaseMemoryOccupation(unittest.TestCase):
def test_monkey_patch_torch_reductions(self):
mp.set_start_method("spawn", force=True)
for enable_patch in [False, True]:
for params in [
# Same visible devices
dict(
sender_info=dict(
visible_devices=[0, 1],
tensor_device=1,
),
receiver_info=dict(
visible_devices=[0, 1],
tensor_device=1,
),
),
# Different visible devices
dict(
sender_info=dict(
visible_devices=[0, 1],
tensor_device=1,
),
receiver_info=dict(
visible_devices=[1, 0],
# If enable patch, this should be fixed, and cuda:1 becomes cuda:0
tensor_device=0 if enable_patch else 1,
),
),
]:
with self.subTest(f"{enable_patch=} {params=}"):
self._test_monkey_patch_torch_reductions_core(
enable_patch=enable_patch, **params
)
def _test_monkey_patch_torch_reductions_core(
self,
sender_info: Dict,
receiver_info: Dict,
enable_patch: bool,
):
print(
f'test_monkey_patch_torch_reductions_core {os.environ.get("CUDA_VISIBLE_DEVICES")=}'
)
cuda_visible_devices_list: List[int] = [
int(x)
for x in os.environ.get("CUDA_VISIBLE_DEVICES", "0,1,2,3,4,5,6,7").split(
","
)
]
processes = []
output_reader, output_writer = mp.Pipe(duplex=False)
queue = mp.Queue()
for role, info in [
("sender", sender_info),
("receiver", receiver_info),
]:
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
str(cuda_visible_devices_list[device])
for device in info["visible_devices"]
)
p = mp.Process(
target=_run_subprocess,
kwargs=dict(
role=role,
queue=queue,
output_writer=output_writer,
tensor_device=info["tensor_device"],
enable_patch=enable_patch,
),
)
p.start()
processes.append(p)
for _ in range(len(processes)):
self.assertTrue(
output_reader.recv(), f"Subprocess has error, please see logs above."
)
for p in processes:
p.join()
def _run_subprocess(
role: str, queue: mp.Queue, output_writer, tensor_device: int, enable_patch: bool
):
print(
f'subprocess[{role}] start {os.environ.get("CUDA_VISIBLE_DEVICES")=}',
flush=True,
)
if enable_patch:
print(f"subprocess[{role}] execute monkey_patch_torch_reductions", flush=True)
monkey_patch_torch_reductions()
try:
if role == "sender":
tensor = torch.tensor([1.0, 2.0], device=f"cuda:{tensor_device}")
print(f"sender queue.put {tensor=} {tensor.device=}")
queue.put(tensor)
assert queue.get() == "done"
elif role == "receiver":
tensor = queue.get()
print(f"receiver queue.get {tensor=} {tensor.device=}")
assert str(tensor.device) == f"cuda:{tensor_device}"
queue.put("done")
else:
raise NotImplementedError
execution_ok = True
except Exception as e:
print(f"subprocess[{role}] has error: {e}", flush=True)
traceback.print_exc()
execution_ok = False
output_writer.send(execution_ok)
output_writer.close()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment