"cmake/vscode:/vscode.git/clone" did not exist on "a283cddfc9864d7d5ada3dea9afffbe53506c1a2"
test_openai_server.py 24.9 KB
Newer Older
1
"""
2
3
4
5
python3 -m unittest openai_server.basic.test_openai_server.TestOpenAIServer.test_completion
python3 -m unittest openai_server.basic.test_openai_server.TestOpenAIServer.test_completion_stream
python3 -m unittest openai_server.basic.test_openai_server.TestOpenAIServer.test_chat_completion
python3 -m unittest openai_server.basic.test_openai_server.TestOpenAIServer.test_chat_completion_stream
6
"""
Chayenne's avatar
Chayenne committed
7

8
import json
9
import re
10
import unittest
11

12
import numpy as np
13
import openai
14
import requests
15

16
from sglang.srt.utils import kill_process_tree
17
from sglang.srt.utils.hf_transformers_utils import get_tokenizer
woodx's avatar
woodx committed
18
from sglang.test.runners import TEST_RERANK_QUERY_DOCS
19
from sglang.test.test_utils import (
woodx's avatar
woodx committed
20
    DEFAULT_SMALL_CROSS_ENCODER_MODEL_NAME_FOR_TEST,
Lianmin Zheng's avatar
Lianmin Zheng committed
21
    DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
22
23
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
24
    CustomTestCase,
25
26
    popen_launch_server,
)
27
28


29
class TestOpenAIServer(CustomTestCase):
30
31
    @classmethod
    def setUpClass(cls):
Lianmin Zheng's avatar
Lianmin Zheng committed
32
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
33
        cls.base_url = DEFAULT_URL_FOR_TEST
34
35
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
36
37
38
39
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
40
        )
41
        cls.base_url += "/v1"
Lianmin Zheng's avatar
Lianmin Zheng committed
42
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)
43
44
45

    @classmethod
    def tearDownClass(cls):
46
        kill_process_tree(cls.process.pid)
47

yichuan~'s avatar
yichuan~ committed
48
    def run_completion(
49
        self, echo, logprobs, use_list_input, parallel_sample_num, token_input
yichuan~'s avatar
yichuan~ committed
50
    ):
51
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
52
        prompt = "The capital of France is"
yichuan~'s avatar
yichuan~ committed
53
54
55
56
57
58
        if token_input:
            prompt_input = self.tokenizer.encode(prompt)
            num_prompt_tokens = len(prompt_input)
        else:
            prompt_input = prompt
            num_prompt_tokens = len(self.tokenizer.encode(prompt))
59
60

        if use_list_input:
yichuan~'s avatar
yichuan~ committed
61
            prompt_arg = [prompt_input, prompt_input]
62
            num_choices = len(prompt_arg)
yichuan~'s avatar
yichuan~ committed
63
            num_prompt_tokens *= 2
64
        else:
yichuan~'s avatar
yichuan~ committed
65
            prompt_arg = prompt_input
66
67
            num_choices = 1

68
69
        response = client.completions.create(
            model=self.model,
70
            prompt=prompt_arg,
yichuan~'s avatar
yichuan~ committed
71
            temperature=0,
72
73
74
            max_tokens=32,
            echo=echo,
            logprobs=logprobs,
yichuan~'s avatar
yichuan~ committed
75
            n=parallel_sample_num,
76
        )
77

yichuan~'s avatar
yichuan~ committed
78
        assert len(response.choices) == num_choices * parallel_sample_num
79

Cody Yu's avatar
Cody Yu committed
80
        if echo:
81
            text = response.choices[0].text
82
            assert text.startswith(prompt)
yichuan~'s avatar
yichuan~ committed
83

Cody Yu's avatar
Cody Yu committed
84
        if logprobs:
85
86
87
            assert response.choices[0].logprobs
            assert isinstance(response.choices[0].logprobs.tokens[0], str)
            assert isinstance(response.choices[0].logprobs.top_logprobs[1], dict)
88
            ret_num_top_logprobs = len(response.choices[0].logprobs.top_logprobs[1])
89

90
            # FIXME: Sometimes, some top_logprobs are missing in the return value. The reason is that some output id maps to the same output token and duplicate in the map
91
            # assert ret_num_top_logprobs == logprobs, f"{ret_num_top_logprobs} vs {logprobs}"
yichuan~'s avatar
yichuan~ committed
92
            assert ret_num_top_logprobs > 0
93

94
95
96
            # when echo=True and request.logprobs>0, logprob_start_len is 0, so the first token's logprob would be None.
            if not echo:
                assert response.choices[0].logprobs.token_logprobs[0]
yichuan~'s avatar
yichuan~ committed
97

98
99
        assert response.id
        assert response.created
yichuan~'s avatar
yichuan~ committed
100
101
102
        assert (
            response.usage.prompt_tokens == num_prompt_tokens
        ), f"{response.usage.prompt_tokens} vs {num_prompt_tokens}"
103
104
105
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

106
    def run_completion_stream(
107
        self, echo, logprobs, use_list_input, parallel_sample_num, token_input
108
    ):
109
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
110
        prompt = "The capital of France is"
yichuan~'s avatar
yichuan~ committed
111
        if token_input:
112
113
            prompt_input = self.tokenizer.encode(prompt)
            num_prompt_tokens = len(prompt_input)
yichuan~'s avatar
yichuan~ committed
114
        else:
115
116
117
118
119
120
121
122
123
124
125
            prompt_input = prompt
            num_prompt_tokens = len(self.tokenizer.encode(prompt))

        if use_list_input:
            prompt_arg = [prompt_input, prompt_input]
            num_choices = len(prompt_arg)
            num_prompt_tokens *= 2
        else:
            prompt_arg = prompt_input
            num_choices = 1

126
127
        generator = client.completions.create(
            model=self.model,
yichuan~'s avatar
yichuan~ committed
128
129
            prompt=prompt_arg,
            temperature=0,
130
131
132
133
            max_tokens=32,
            echo=echo,
            logprobs=logprobs,
            stream=True,
134
            stream_options={"include_usage": True},
135
            n=parallel_sample_num,
136
137
        )

138
        is_firsts = {}
139
        for response in generator:
140
141
            usage = response.usage
            if usage is not None:
142
143
144
                assert usage.prompt_tokens > 0, f"usage.prompt_tokens was zero"
                assert usage.completion_tokens > 0, f"usage.completion_tokens was zero"
                assert usage.total_tokens > 0, f"usage.total_tokens was zero"
145
                continue
146
147
148
149

            index = response.choices[0].index
            is_first = is_firsts.get(index, True)

150
            if logprobs:
151
152
153
154
                assert response.choices[0].logprobs, f"no logprobs in response"
                assert isinstance(
                    response.choices[0].logprobs.tokens[0], str
                ), f"{response.choices[0].logprobs.tokens[0]} is not a string"
155
                if not (is_first and echo):
156
157
                    assert isinstance(
                        response.choices[0].logprobs.top_logprobs[0], dict
158
                    ), f"top_logprobs was not a dictionary"
159
160
161
                    ret_num_top_logprobs = len(
                        response.choices[0].logprobs.top_logprobs[0]
                    )
162
                    # FIXME: Sometimes, some top_logprobs are missing in the return value. The reason is that some output id maps to the same output token and duplicate in the map
163
                    # assert ret_num_top_logprobs == logprobs, f"{ret_num_top_logprobs} vs {logprobs}"
164
                    assert ret_num_top_logprobs > 0, f"ret_num_top_logprobs was 0"
165

166
            if is_first:
167
                if echo:
yichuan~'s avatar
yichuan~ committed
168
169
                    assert response.choices[0].text.startswith(
                        prompt
170
171
                    ), f"{response.choices[0].text} and all args {echo} {logprobs} {token_input} {is_first}"
                is_firsts[index] = False
172
173
            assert response.id, f"no id in response"
            assert response.created, f"no created in response"
174

175
176
177
178
179
        for index in [i for i in range(parallel_sample_num * num_choices)]:
            assert not is_firsts.get(
                index, True
            ), f"index {index} is not found in the response"

180
    def run_chat_completion(self, logprobs, parallel_sample_num):
181
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
182
183
184
185
        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
Ying Sheng's avatar
Ying Sheng committed
186
187
188
189
                {
                    "role": "user",
                    "content": "What is the capital of France? Answer in a few words.",
                },
190
191
192
193
            ],
            temperature=0,
            logprobs=logprobs is not None and logprobs > 0,
            top_logprobs=logprobs,
yichuan~'s avatar
yichuan~ committed
194
            n=parallel_sample_num,
195
        )
Ying Sheng's avatar
Ying Sheng committed
196

197
198
199
200
201
202
203
204
205
206
207
        if logprobs:
            assert isinstance(
                response.choices[0].logprobs.content[0].top_logprobs[0].token, str
            )

            ret_num_top_logprobs = len(
                response.choices[0].logprobs.content[0].top_logprobs
            )
            assert (
                ret_num_top_logprobs == logprobs
            ), f"{ret_num_top_logprobs} vs {logprobs}"
Ying Sheng's avatar
Ying Sheng committed
208

yichuan~'s avatar
yichuan~ committed
209
        assert len(response.choices) == parallel_sample_num
210
211
212
213
214
215
216
217
        assert response.choices[0].message.role == "assistant"
        assert isinstance(response.choices[0].message.content, str)
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

218
    def run_chat_completion_stream(self, logprobs, parallel_sample_num=1):
219
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
220
221
222
223
224
225
226
227
228
229
        generator = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "What is the capital of France?"},
            ],
            temperature=0,
            logprobs=logprobs is not None and logprobs > 0,
            top_logprobs=logprobs,
            stream=True,
230
            stream_options={"include_usage": True},
231
            n=parallel_sample_num,
232
233
        )

234
        is_firsts = {}
235
        is_finished = {}
236
        finish_reason_counts = {}
237
        for response in generator:
238
239
            usage = response.usage
            if usage is not None:
240
241
242
                assert usage.prompt_tokens > 0, f"usage.prompt_tokens was zero"
                assert usage.completion_tokens > 0, f"usage.completion_tokens was zero"
                assert usage.total_tokens > 0, f"usage.total_tokens was zero"
243
244
                continue

245
            index = response.choices[0].index
246
247
248
            finish_reason = response.choices[0].finish_reason
            if finish_reason is not None:
                is_finished[index] = True
249
                finish_reason_counts[index] = finish_reason_counts.get(index, 0) + 1
250

251
            data = response.choices[0].delta
252

253
            if is_firsts.get(index, True):
254
255
256
                assert (
                    data.role == "assistant"
                ), f"data.role was not 'assistant' for first chunk"
257
                is_firsts[index] = False
258
259
                continue

260
            if logprobs and not is_finished.get(index, False):
261
                assert response.choices[0].logprobs, f"logprobs was not returned"
yichuan~'s avatar
yichuan~ committed
262
263
                assert isinstance(
                    response.choices[0].logprobs.content[0].top_logprobs[0].token, str
264
                ), f"top_logprobs token was not a string"
yichuan~'s avatar
yichuan~ committed
265
266
                assert isinstance(
                    response.choices[0].logprobs.content[0].top_logprobs, list
267
                ), f"top_logprobs was not a list"
yichuan~'s avatar
yichuan~ committed
268
269
270
271
272
273
                ret_num_top_logprobs = len(
                    response.choices[0].logprobs.content[0].top_logprobs
                )
                assert (
                    ret_num_top_logprobs == logprobs
                ), f"{ret_num_top_logprobs} vs {logprobs}"
274

275
276
277
            assert (
                isinstance(data.content, str)
                or isinstance(data.reasoning_content, str)
278
                or (isinstance(data.tool_calls, list) and len(data.tool_calls) > 0)
279
280
                or response.choices[0].finish_reason
            )
281
282
283
            assert response.id
            assert response.created

284
285
286
287
288
        for index in [i for i in range(parallel_sample_num)]:
            assert not is_firsts.get(
                index, True
            ), f"index {index} is not found in the response"

289
290
291
292
293
294
295
296
297
        # Verify that each choice gets exactly one finish_reason chunk
        for index in range(parallel_sample_num):
            assert (
                index in finish_reason_counts
            ), f"No finish_reason found for index {index}"
            assert (
                finish_reason_counts[index] == 1
            ), f"Expected 1 finish_reason chunk for index {index}, got {finish_reason_counts[index]}"

298
    def test_completion(self):
299
300
301
302
303
304
305
306
307
308
309
310
        for echo in [False, True]:
            for logprobs in [None, 5]:
                for use_list_input in [True, False]:
                    for parallel_sample_num in [1, 2]:
                        for token_input in [False, True]:
                            self.run_completion(
                                echo,
                                logprobs,
                                use_list_input,
                                parallel_sample_num,
                                token_input,
                            )
311
312

    def test_completion_stream(self):
313
        # parallel sampling and list input are not supported in streaming mode
314
315
316
317
318
319
320
321
322
323
324
325
        for echo in [False, True]:
            for logprobs in [None, 5]:
                for use_list_input in [True, False]:
                    for parallel_sample_num in [1, 2]:
                        for token_input in [False, True]:
                            self.run_completion_stream(
                                echo,
                                logprobs,
                                use_list_input,
                                parallel_sample_num,
                                token_input,
                            )
326

327
    def test_chat_completion(self):
328
329
330
        for logprobs in [None, 5]:
            for parallel_sample_num in [1, 2]:
                self.run_chat_completion(logprobs, parallel_sample_num)
331
332

    def test_chat_completion_stream(self):
333
334
335
        for logprobs in [None, 5]:
            for parallel_sample_num in [1, 2]:
                self.run_chat_completion_stream(logprobs, parallel_sample_num)
336
337

    def test_regex(self):
338
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

        regex = (
            r"""\{\n"""
            + r"""   "name": "[\w]+",\n"""
            + r"""   "population": [\d]+\n"""
            + r"""\}"""
        )

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "Introduce the capital of France."},
            ],
            temperature=0,
            max_tokens=128,
            extra_body={"regex": regex},
        )
        text = response.choices[0].message.content

        try:
            js_obj = json.loads(text)
        except (TypeError, json.decoder.JSONDecodeError):
            print("JSONDecodeError", text)
            raise
        assert isinstance(js_obj["name"], str)
        assert isinstance(js_obj["population"], int)

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    def test_penalty(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "Introduce the capital of France."},
            ],
            temperature=0,
            max_tokens=32,
            frequency_penalty=1.0,
        )
        text = response.choices[0].message.content
        assert isinstance(text, str)

383
384
385
386
    def test_response_prefill(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
387
            model="meta-llama/Llama-3.1-8B-Instruct",
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {
                    "role": "user",
                    "content": """
Extract the name, size, price, and color from this product description as a JSON object:

<description>
The SmartHome Mini is a compact smart home assistant available in black or white for only $49.99. At just 5 inches wide, it lets you control lights, thermostats, and other connected devices via voice or app—no matter where you place it in your home. This affordable little hub brings convenient hands-free control to your smart devices.
</description>
""",
                },
                {
                    "role": "assistant",
                    "content": "{\n",
                },
            ],
            temperature=0,
406
            extra_body={"continue_final_message": True},
407
408
409
410
411
412
413
414
        )

        assert (
            response.choices[0]
            .message.content.strip()
            .startswith('"name": "SmartHome Mini",')
        )

415
416
417
418
419
420
    def test_model_list(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        models = list(client.models.list())
        assert len(models) == 1
        assert isinstance(getattr(models[0], "max_model_len", None), int)

421
422
423
424
425
426
427
428
429
430
431
432
    def test_retrieve_model(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        # Test retrieving an existing model
        retrieved_model = client.models.retrieve(self.model)
        self.assertEqual(retrieved_model.id, self.model)
        self.assertEqual(retrieved_model.root, self.model)

        # Test retrieving a non-existent model
        with self.assertRaises(openai.NotFoundError):
            client.models.retrieve("non-existent-model")

433

woodx's avatar
woodx committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
class TestOpenAIV1Rerank(CustomTestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_CROSS_ENCODER_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"
        cls.score_tolerance = 1e-2

        # Configure embedding-specific args
        other_args = [
            "--is-embedding",
            "--enable-metrics",
            "--disable-radix-cache",
            "--chunked-prefill-size",
            "-1",
            "--attention-backend",
            "torch_native",
        ]
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=other_args,
        )
        cls.base_url += "/v1/rerank"

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def run_rerank(self, query, docs):
        response = requests.post(
            self.base_url,
            headers={
                "Authorization": f"Bearer {self.api_key}",
                "Content-Type": "application/json",
            },
            json={"query": query, "documents": docs},
        )

        return response.json()

    def test_rerank_single(self):
        """Test single rerank request"""
        query = TEST_RERANK_QUERY_DOCS[0]["query"]
        docs = TEST_RERANK_QUERY_DOCS[0]["documents"]

        response = self.run_rerank(query, docs)

        self.assertEqual(len(response), 1)
        self.assertTrue(isinstance(response[0]["score"], float))
        self.assertTrue(isinstance(response[0]["document"], str))
        self.assertTrue(isinstance(response[0]["index"], int))

    def test_rerank_batch(self):
        """Test batch rerank request"""
        query = TEST_RERANK_QUERY_DOCS[1]["query"]
        docs = TEST_RERANK_QUERY_DOCS[1]["documents"]

        response = self.run_rerank(query, docs)

        self.assertEqual(len(response), 2)
        self.assertTrue(isinstance(response[0]["score"], float))
        self.assertTrue(isinstance(response[1]["score"], float))
        self.assertTrue(isinstance(response[0]["document"], str))
        self.assertTrue(isinstance(response[1]["document"], str))
        self.assertTrue(isinstance(response[0]["index"], int))
        self.assertTrue(isinstance(response[1]["index"], int))


505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
class TestOpenAIV1Score(CustomTestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"

        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
        )
        cls.base_url += "/v1/score"
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def run_score(
        self, query, items, label_token_ids, apply_softmax=False, item_first=False
    ):
        response = requests.post(
            self.base_url,
            headers={
                "Authorization": f"Bearer {self.api_key}",
                "Content-Type": "application/json",
            },
            json={
                "model": self.model,
                "query": query,
                "items": items,
                "label_token_ids": label_token_ids,
                "apply_softmax": apply_softmax,
                "item_first": item_first,
            },
        )
        return response.json()

    def test_score_text_input(self):
        """Test scoring with text input"""
        query = "The capital of France is"
        items = ["Paris", "London", "Berlin"]

        # Get valid token IDs from the tokenizer
        label_token_ids = []
        for item in items:
            token_ids = self.tokenizer.encode(item, add_special_tokens=False)
            if not token_ids:
                self.fail(f"Failed to encode item: {item}")
            label_token_ids.append(token_ids[0])

        response = self.run_score(query, items, label_token_ids, apply_softmax=True)

        # Handle error responses
        if response.get("type") == "BadRequestError":
            self.fail(f"Score request failed with error: {response['message']}")

        # Verify response structure
        self.assertIn("scores", response, "Response should have a 'scores' field")
        self.assertIsInstance(response["scores"], list, "scores should be a list")
        self.assertEqual(
            len(response["scores"]),
            len(items),
            "Number of scores should match number of items",
        )

        # Each score should be a list of floats in the order of label_token_ids
        for i, score_list in enumerate(response["scores"]):
            self.assertIsInstance(score_list, list, f"Score {i} should be a list")
            self.assertEqual(
                len(score_list),
                len(label_token_ids),
                f"Score {i} length should match label_token_ids",
            )
            self.assertTrue(
                all(isinstance(v, float) for v in score_list),
                f"Score {i} values should be floats",
            )
            self.assertAlmostEqual(
                sum(score_list),
                1.0,
                places=6,
                msg=f"Score {i} probabilities should sum to 1",
            )

    def test_score_token_input(self):
        """Test scoring with token IDs input"""
        query = "The capital of France is"
        items = ["Paris", "London", "Berlin"]

        # Get valid token IDs
        query_ids = self.tokenizer.encode(query, add_special_tokens=False)
        item_ids = [
            self.tokenizer.encode(item, add_special_tokens=False) for item in items
        ]
        label_token_ids = [
            ids[0] for ids in item_ids if ids
        ]  # Get first token ID of each item

        response = self.run_score(
            query_ids, item_ids, label_token_ids, apply_softmax=True
        )

        # Handle error responses
        if response.get("type") == "BadRequestError":
            self.fail(f"Score request failed with error: {response['message']}")

        # Verify response structure
        self.assertIn("scores", response, "Response should have a 'scores' field")
        self.assertIsInstance(response["scores"], list, "scores should be a list")
        self.assertEqual(
            len(response["scores"]),
            len(items),
            "Number of scores should match number of items",
        )

        # Each score should be a list of floats in the order of label_token_ids
        for i, score_list in enumerate(response["scores"]):
            self.assertIsInstance(score_list, list, f"Score {i} should be a list")
            self.assertEqual(
                len(score_list),
                len(label_token_ids),
                f"Score {i} length should match label_token_ids",
            )
            self.assertTrue(
                all(isinstance(v, float) for v in score_list),
                f"Score {i} values should be floats",
            )
            self.assertAlmostEqual(
                sum(score_list),
                1.0,
                places=6,
                msg=f"Score {i} probabilities should sum to 1",
            )

    def test_score_error_handling(self):
        """Test error handling for invalid inputs"""
        query = "The capital of France is"
        items = ["Paris", "London", "Berlin"]

        # Test with invalid token ID
        response = requests.post(
            self.base_url,
            headers={
                "Authorization": f"Bearer {self.api_key}",
                "Content-Type": "application/json",
            },
            json={
                "model": self.model,
                "query": query,
                "items": items,
                "label_token_ids": [999999],  # Invalid token ID
                "apply_softmax": True,
            },
        )
        self.assertEqual(response.status_code, 400)
        error_response = response.json()
        self.assertEqual(error_response["type"], "BadRequestError")
        self.assertIn("Token ID 999999 is out of vocabulary", error_response["message"])


668
if __name__ == "__main__":
Lianmin Zheng's avatar
Lianmin Zheng committed
669
    unittest.main()