bench_one_batch.py 22.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
"""
Benchmark the latency of running a single static batch without a server.

This script does not launch a server and uses the low-level APIs.
It accepts server arguments (the same as launch_server.py) and benchmark arguments (e.g., batch size, input lengths).

# Usage (latency test)
## with dummy weights:
python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3-8B-Instruct --load-format dummy
## sweep through multiple data points and store (append) the results in a jsonl file:
python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 1 12 14 --input-len 256 512 --output-len 32 256 --run-name test_run
12
13
## run with profiling:
python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 1 12 14 --input-len 256 512 --profile
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Usage (correctness test):
python -m sglang.bench_one_batch --model-path TinyLlama/TinyLlama-1.1B-Chat-v0.4 --correct

## Reference output (of the correctness test above, can be gpu dependent):
input_ids=[[1, 450, 7483, 310, 3444, 338], [1, 450, 7483, 310, 278, 3303, 13187, 290, 338], [1, 20628, 338, 263, 6575, 1460, 2462, 322, 306, 763]]

prefill logits (first half): tensor([[-10.0312,  -9.5000,   0.8931,  ...,  -4.9414,  -3.2422,  -3.3633],
        [-10.0312,  -9.5000,   0.8931,  ...,  -4.9414,  -3.2422,  -3.3633],
        [ -9.1875, -10.2500,   2.7129,  ...,  -4.3359,  -4.0664,  -4.1328]],
       device='cuda:0')

prefill logits (final): tensor([[-8.3125, -7.1172,  3.3457,  ..., -4.9570, -4.1328, -3.4141],
        [-8.9141, -9.0156,  4.1445,  ..., -4.9922, -4.4961, -4.0781],
        [-9.6328, -9.0547,  4.0195,  ..., -5.3047, -4.7148, -4.4570]],
       device='cuda:0')

========== Prompt 0 ==========
<s> The capital of France is Paris.
The capital of the United States is Washington, D.C.


========== Prompt 1 ==========
<s> The capital of the United Kindom is London.
The capital of the United Kingdom is London.
The capital of the

========== Prompt 2 ==========
<s> Today is a sunny day and I like to go for a walk in the park.
I'm going to the park
"""

import argparse
46
import copy
47
48
49
50
51
import dataclasses
import itertools
import json
import logging
import multiprocessing
52
import os
53
54
55
56
57
58
59
60
import time
from typing import Tuple

import numpy as np
import torch
import torch.distributed as dist

from sglang.srt.configs.model_config import ModelConfig
Lianmin Zheng's avatar
Lianmin Zheng committed
61
from sglang.srt.distributed.parallel_state import destroy_distributed_environment
62
from sglang.srt.entrypoints.engine import _set_envs_and_config
63
from sglang.srt.layers.moe import initialize_moe_config
64
from sglang.srt.managers.schedule_batch import Req, ScheduleBatch
65
from sglang.srt.managers.scheduler import Scheduler
66
67
68
69
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_executor.model_runner import ModelRunner
from sglang.srt.sampling.sampling_params import SamplingParams
from sglang.srt.server_args import PortArgs, ServerArgs
70
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
71
72
73
74
from sglang.srt.utils import (
    configure_logger,
    get_bool_env_var,
    kill_process_tree,
75
76
    require_mlp_sync,
    require_mlp_tp_gather,
77
78
79
    set_gpu_proc_affinity,
    suppress_other_loggers,
)
80
from sglang.srt.utils.hf_transformers_utils import get_tokenizer
81
82
83
84
85
86
87
88


@dataclasses.dataclass
class BenchArgs:
    run_name: str = "default"
    batch_size: Tuple[int] = (1,)
    input_len: Tuple[int] = (1024,)
    output_len: Tuple[int] = (16,)
89
    prompt_filename: str = ""
90
91
92
93
    result_filename: str = "result.jsonl"
    correctness_test: bool = False
    # This is only used for correctness test
    cut_len: int = 4
94
    log_decode_step: int = 0
95
    profile: bool = False
96
    profile_record_shapes: bool = False
97
    profile_filename_prefix: str = "profile"
98
99
100
101
102
103
104
105
106
107
108
109
110

    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
        parser.add_argument("--run-name", type=str, default=BenchArgs.run_name)
        parser.add_argument(
            "--batch-size", type=int, nargs="+", default=BenchArgs.batch_size
        )
        parser.add_argument(
            "--input-len", type=int, nargs="+", default=BenchArgs.input_len
        )
        parser.add_argument(
            "--output-len", type=int, nargs="+", default=BenchArgs.output_len
        )
111
112
113
        parser.add_argument(
            "--prompt-filename", type=str, default=BenchArgs.prompt_filename
        )
114
115
116
117
118
        parser.add_argument(
            "--result-filename", type=str, default=BenchArgs.result_filename
        )
        parser.add_argument("--correctness-test", action="store_true")
        parser.add_argument("--cut-len", type=int, default=BenchArgs.cut_len)
119
120
121
122
123
124
        parser.add_argument(
            "--log-decode-step",
            type=int,
            default=BenchArgs.log_decode_step,
            help="Log decode latency by step, default is set to zero to disable.",
        )
125
        parser.add_argument(
126
            "--profile", action="store_true", help="Use Torch Profiler."
127
        )
128
129
130
131
132
        parser.add_argument(
            "--profile-record-shapes",
            action="store_true",
            help="Record tensor shapes in profiling results.",
        )
133
134
135
136
137
138
139
        parser.add_argument(
            "--profile-filename-prefix",
            type=str,
            default=BenchArgs.profile_filename_prefix,
            help="Prefix of the profiling file names. The full profiling result file(s) be "
            '"[profile_filename_prefix]_batch[batch_size]_input[input_len]_output[output_len].trace.json.gz"',
        )
140
141
142

    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
fzyzcjy's avatar
fzyzcjy committed
143
        # use the default value's type to cast the args into correct types.
144
145
146
147
148
149
150
151
152
        attrs = [(attr.name, type(attr.default)) for attr in dataclasses.fields(cls)]
        return cls(
            **{attr: attr_type(getattr(args, attr)) for attr, attr_type in attrs}
        )


def load_model(server_args, port_args, tp_rank):
    suppress_other_loggers()
    rank_print = print if tp_rank == 0 else lambda *args, **kwargs: None
Cheng Wan's avatar
Cheng Wan committed
153
    moe_ep_rank = tp_rank // (server_args.tp_size // server_args.ep_size)
154

155
    model_config = ModelConfig.from_server_args(server_args)
156
157
158
159
160
161
    model_runner = ModelRunner(
        model_config=model_config,
        mem_fraction_static=server_args.mem_fraction_static,
        gpu_id=tp_rank,
        tp_rank=tp_rank,
        tp_size=server_args.tp_size,
Cheng Wan's avatar
Cheng Wan committed
162
163
        moe_ep_rank=moe_ep_rank,
        moe_ep_size=server_args.ep_size,
164
165
        pp_rank=0,
        pp_size=1,
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        nccl_port=port_args.nccl_port,
        server_args=server_args,
    )
    rank_print(f"max_total_num_tokens={model_runner.max_total_num_tokens}")
    tokenizer = get_tokenizer(
        server_args.tokenizer_path,
        tokenizer_mode=server_args.tokenizer_mode,
        trust_remote_code=server_args.trust_remote_code,
    )
    if server_args.tp_size > 1:
        dist.barrier()
    return model_runner, tokenizer


180
181
182
183
184
185
186
187
188
189
def prepare_inputs_for_correctness_test(bench_args, tokenizer, custom_prompts):
    prompts = (
        custom_prompts
        if custom_prompts
        else [
            "The capital of France is",
            "The capital of the United Kindom is",
            "Today is a sunny day and I like",
        ]
    )
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    input_ids = [tokenizer.encode(p) for p in prompts]
    sampling_params = SamplingParams(
        temperature=0,
        max_new_tokens=BenchArgs.output_len,
    )

    reqs = []
    for i in range(len(prompts)):
        assert len(input_ids[i]) > bench_args.cut_len

        tmp_input_ids = input_ids[i][: bench_args.cut_len]
        req = Req(
            rid=i,
            origin_input_text=prompts[i],
            origin_input_ids=tmp_input_ids,
            sampling_params=sampling_params,
        )
        req.prefix_indices = []
        req.fill_ids = req.origin_input_ids
        req.extend_input_len = len(req.fill_ids) - len(req.prefix_indices)
210
        req.logprob_start_len = len(req.origin_input_ids) - 1
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        reqs.append(req)

    return input_ids, reqs


def prepare_extend_inputs_for_correctness_test(
    bench_args, input_ids, reqs, model_runner
):
    for i in range(len(reqs)):
        req = reqs[i]
        req.fill_ids += input_ids[i][bench_args.cut_len :]
        req.prefix_indices = model_runner.req_to_token_pool.req_to_token[
            i, : bench_args.cut_len
        ]
        req.extend_input_len = len(req.fill_ids) - len(req.prefix_indices)
226
        req.logprob_start_len = len(req.origin_input_ids) - 1
227
228
229
    return reqs


230
231
232
233
234
235
236
237
def prepare_synthetic_inputs_for_latency_test(
    batch_size, input_len, custom_inputs=None
):
    input_ids = (
        custom_inputs
        if custom_inputs
        else np.random.randint(0, 10000, (batch_size, input_len), dtype=np.int32)
    )
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    sampling_params = SamplingParams(
        temperature=0,
        max_new_tokens=BenchArgs.output_len,
    )

    reqs = []
    for i in range(len(input_ids)):
        req = Req(
            rid=i,
            origin_input_text="",
            origin_input_ids=list(input_ids[i]),
            sampling_params=sampling_params,
        )
        req.prefix_indices = []
        req.fill_ids = req.origin_input_ids
        req.extend_input_len = len(req.fill_ids) - len(req.prefix_indices)
254
        req.logprob_start_len = len(req.origin_input_ids) - 1
255
256
257
258
259
260
261
262
263
264
        reqs.append(req)

    return reqs


@torch.no_grad
def extend(reqs, model_runner):
    batch = ScheduleBatch.init_new(
        reqs=reqs,
        req_to_token_pool=model_runner.req_to_token_pool,
265
        token_to_kv_pool_allocator=model_runner.token_to_kv_pool_allocator,
266
267
        tree_cache=None,
        model_config=model_runner.model_config,
268
        enable_overlap=False,
269
        spec_algorithm=SpeculativeAlgorithm.NONE,
270
271
    )
    batch.prepare_for_extend()
272
    _maybe_prepare_mlp_sync_batch(batch, model_runner)
273
274
    model_worker_batch = batch.get_model_worker_batch()
    forward_batch = ForwardBatch.init_new(model_worker_batch, model_runner)
275
    logits_output, _ = model_runner.forward(forward_batch)
276
277
278
279
280
281
282
283
    next_token_ids = model_runner.sample(logits_output, forward_batch)
    return next_token_ids, logits_output.next_token_logits, batch


@torch.no_grad
def decode(input_token_ids, batch, model_runner):
    batch.output_ids = input_token_ids
    batch.prepare_for_decode()
284
    _maybe_prepare_mlp_sync_batch(batch, model_runner)
285
286
    model_worker_batch = batch.get_model_worker_batch()
    forward_batch = ForwardBatch.init_new(model_worker_batch, model_runner)
287
    logits_output, _ = model_runner.forward(forward_batch)
288
289
290
291
    next_token_ids = model_runner.sample(logits_output, forward_batch)
    return next_token_ids, logits_output.next_token_logits


292
293
294
def _maybe_prepare_mlp_sync_batch(batch: ScheduleBatch, model_runner):
    if require_mlp_sync(model_runner.server_args):
        Scheduler.prepare_mlp_sync_batch_raw(
295
296
297
            batch,
            dp_size=model_runner.server_args.dp_size,
            attn_tp_size=1,
298
            tp_group=model_runner.tp_group,
299
300
301
302
            get_idle_batch=None,
            disable_cuda_graph=model_runner.server_args.disable_cuda_graph,
            spec_algorithm=SpeculativeAlgorithm.NONE,
            speculative_num_draft_tokens=None,
303
            require_mlp_tp_gather=require_mlp_tp_gather(model_runner.server_args),
304
            disable_overlap_schedule=model_runner.server_args.disable_overlap_schedule,
305
306
307
        )


308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
def _read_prompts_from_file(prompt_file, rank_print):
    """Read custom prompts from the file specified by `--prompt-filename`."""
    if not prompt_file:
        return []
    if not os.path.exists(prompt_file):
        rank_print(
            f"Custom prompt file {prompt_file} not found. Using default inputs..."
        )
        return []
    with open(prompt_file, "r") as pf:
        return pf.readlines()


def _save_profile_trace_results(profiler, filename):
    parent_dir = os.path.dirname(os.path.abspath(filename))
    os.makedirs(parent_dir, exist_ok=True)
    profiler.export_chrome_trace(filename)
    print(
        profiler.key_averages(group_by_input_shape=True).table(
            sort_by="self_cpu_time_total"
        )
    )


332
333
334
335
336
337
338
339
340
341
342
343
344
345
def correctness_test(
    server_args,
    port_args,
    bench_args,
    tp_rank,
):
    # Configure the logger
    configure_logger(server_args, prefix=f" TP{tp_rank}")
    rank_print = print if tp_rank == 0 else lambda *args, **kwargs: None

    # Load the model
    model_runner, tokenizer = load_model(server_args, port_args, tp_rank)

    # Prepare inputs
346
347
348
349
    custom_prompts = _read_prompts_from_file(bench_args.prompt_filename, rank_print)
    input_ids, reqs = prepare_inputs_for_correctness_test(
        bench_args, tokenizer, custom_prompts
    )
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    rank_print(f"\n{input_ids=}\n")

    if bench_args.cut_len > 0:
        # Prefill
        next_token_ids, next_token_logits, batch = extend(reqs, model_runner)
        rank_print(f"prefill logits (first half): {next_token_logits} \n")

    # Prepare extend inputs
    reqs = prepare_extend_inputs_for_correctness_test(
        bench_args, input_ids, reqs, model_runner
    )

    # Extend (prefill w/ KV cache)
    next_token_ids, next_token_logits, batch = extend(reqs, model_runner)
    rank_print(f"prefill logits (final): {next_token_logits} \n")

    # Decode
    output_ids = [input_ids[i] + [next_token_ids[i]] for i in range(len(input_ids))]
    for _ in range(bench_args.output_len[0] - 1):
        next_token_ids, _ = decode(next_token_ids, batch, model_runner)
        next_token_ids_list = next_token_ids.tolist()
        for i in range(len(reqs)):
            output_ids[i].append(next_token_ids_list[i])

    # Print output texts
    for i in range(len(reqs)):
        rank_print(f"========== Prompt {i} ==========")
        rank_print(tokenizer.decode(output_ids[i]), "\n")


def synchronize(device):
381
    torch.get_device_module(device).synchronize()
382
383
384


def latency_test_run_once(
385
386
387
388
389
390
391
392
    run_name,
    model_runner,
    rank_print,
    reqs,
    batch_size,
    input_len,
    output_len,
    device,
393
    log_decode_step,
394
    profile,
395
    profile_record_shapes,
396
    profile_filename_prefix,
397
398
399
400
401
402
403
404
405
406
):
    max_batch_size = model_runner.max_total_num_tokens // (input_len + output_len)
    if batch_size > max_batch_size:
        rank_print(
            f"skipping ({batch_size}, {input_len}, {output_len}) due to max batch size limit"
        )
        return

    # Clear the pools.
    model_runner.req_to_token_pool.clear()
407
    model_runner.token_to_kv_pool_allocator.clear()
408
409
410
411
412
413
414
415
416
417

    measurement_results = {
        "run_name": run_name,
        "batch_size": batch_size,
        "input_len": input_len,
        "output_len": output_len,
    }

    tot_latency = 0

418
419
420
421
422
423
424
425
    profiler = None
    if profile:
        profiler = torch.profiler.profile(
            activities=[
                torch.profiler.ProfilerActivity.CPU,
                torch.profiler.ProfilerActivity.CUDA,
            ],
            with_stack=True,
426
            record_shapes=profile_record_shapes,
427
428
429
        )
        profiler.start()

430
431
    # Prefill
    synchronize(device)
432
    tic = time.perf_counter()
433
434
    next_token_ids, _, batch = extend(reqs, model_runner)
    synchronize(device)
435
    prefill_latency = time.perf_counter() - tic
436
437
438
439
440
441
442
443
    tot_latency += prefill_latency
    throughput = input_len * batch_size / prefill_latency
    rank_print(
        f"Prefill. latency: {prefill_latency:6.5f} s, throughput: {throughput:9.2f} token/s"
    )
    measurement_results["prefill_latency"] = prefill_latency
    measurement_results["prefill_throughput"] = throughput

444
445
    if profile:
        profiler.stop()
Mick's avatar
Mick committed
446
447
448
        trace_filename = f"{profile_filename_prefix}_batch{batch_size}_input{input_len}_output{output_len}_prefill.trace.json.gz"
        _save_profile_trace_results(profiler, trace_filename)
        rank_print(f"torch profiler chrome trace for prefill saved to {trace_filename}")
449

450
451
452
453
    # Decode
    decode_latencies = []
    for i in range(output_len - 1):
        synchronize(device)
454
455
456
457
458
459
460
461
462
463
464
465
        if profile and i == output_len / 2:
            profiler = None
            profiler = torch.profiler.profile(
                activities=[
                    torch.profiler.ProfilerActivity.CPU,
                    torch.profiler.ProfilerActivity.CUDA,
                ],
                with_stack=True,
                record_shapes=profile_record_shapes,
            )
            profiler.start()

466
        tic = time.perf_counter()
467
468
        next_token_ids, _ = decode(next_token_ids, batch, model_runner)
        synchronize(device)
469
        latency = time.perf_counter() - tic
470
471
472
        tot_latency += latency
        throughput = batch_size / latency
        decode_latencies.append(latency)
473
        if i < 5 or (log_decode_step > 0 and i % log_decode_step == 0):
474
            rank_print(
475
                f"Decode {i}. Batch size: {batch_size}, latency: {latency:6.5f} s, throughput: {throughput:9.2f} token/s"
476
477
            )

478
479
        if profile and i == output_len / 2:
            profiler.stop()
Mick's avatar
Mick committed
480
481
            trace_filename = f"{profile_filename_prefix}_batch{batch_size}_input{input_len}_output{output_len}_decode.trace.json.gz"
            _save_profile_trace_results(profiler, trace_filename)
482
            rank_print(
Mick's avatar
Mick committed
483
                f"torch profiler chrome trace for decoding 1 token saved to {trace_filename}"
484
            )
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
    # Record decode timing from 2nd output
    if output_len > 1:
        med_decode_latency = np.median(decode_latencies)
        med_decode_throughput = batch_size / med_decode_latency
        rank_print(
            f"Decode.  median latency: {med_decode_latency:6.5f} s, median throughput: {med_decode_throughput:9.2f} token/s"
        )
        measurement_results["median_decode_latency"] = med_decode_latency
        measurement_results["median_decode_throughput"] = med_decode_throughput

    throughput = (input_len + output_len) * batch_size / tot_latency
    rank_print(
        f"Total. latency: {tot_latency:6.3f} s, throughput: {throughput:9.2f} token/s"
    )
    measurement_results["total_latency"] = tot_latency
    measurement_results["overall_throughput"] = throughput
    return measurement_results


def latency_test(
    server_args,
    port_args,
    bench_args,
    tp_rank,
):
511
512
    initialize_moe_config(server_args)

513
514
515
516
    # Set CPU affinity
    if get_bool_env_var("SGLANG_SET_CPU_AFFINITY"):
        set_gpu_proc_affinity(server_args.tp_size, server_args.nnodes, tp_rank)

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    # Configure the logger
    configure_logger(server_args, prefix=f" TP{tp_rank}")
    rank_print = print if tp_rank == 0 else lambda *args, **kwargs: None

    # Load the model
    model_runner, tokenizer = load_model(server_args, port_args, tp_rank)

    # Prepare inputs for warm up
    reqs = prepare_synthetic_inputs_for_latency_test(
        bench_args.batch_size[0], bench_args.input_len[0]
    )

    # Warm up
    rank_print("Warmup ...")
    latency_test_run_once(
        bench_args.run_name,
        model_runner,
        rank_print,
        reqs,
        bench_args.batch_size[0],
        bench_args.input_len[0],
538
        min(32, bench_args.output_len[0]),  # shorter decoding to speed up the warmup
539
        server_args.device,
540
        log_decode_step=0,
541
        profile=False,
542
        profile_record_shapes=False,
543
        profile_filename_prefix="",  # not used
544
    )
545

546
547
    rank_print("Benchmark ...")

548
549
550
551
    custom_inputs = _read_prompts_from_file(bench_args.prompt_filename, rank_print)
    custom_inputs = [tokenizer.encode(p.strip()) for p in custom_inputs]
    custom_input_len = len(custom_inputs)

552
553
554
555
556
    # Run the sweep
    result_list = []
    for bs, il, ol in itertools.product(
        bench_args.batch_size, bench_args.input_len, bench_args.output_len
    ):
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
        bs_aligned_inputs = []
        if custom_inputs:
            if custom_input_len == bs:
                bs_aligned_inputs = custom_inputs
            elif custom_input_len > bs:
                rank_print(
                    f"Custom input size ({custom_input_len}) is larger than batch_size ({bs}). "
                    f"Using the first {bs} prompts."
                )
                bs_aligned_inputs = copy.deepcopy(custom_inputs[:bs])
            else:
                rank_print(
                    f"Custom input size ({custom_input_len}) is smaller than batch_size ({bs}). "
                    f"Pad to the desired batch_size with the last prompt."
                )
                bs_aligned_inputs = copy.deepcopy(custom_inputs)
                bs_aligned_inputs.extend(
                    [bs_aligned_inputs[-1]] * (bs - custom_input_len)
                )

        reqs = prepare_synthetic_inputs_for_latency_test(bs, il, bs_aligned_inputs)
578
579
580
581
582
583
584
585
586
        ret = latency_test_run_once(
            bench_args.run_name,
            model_runner,
            rank_print,
            reqs,
            bs,
            il,
            ol,
            server_args.device,
587
            bench_args.log_decode_step,
588
            bench_args.profile if tp_rank == 0 else None,
589
            bench_args.profile_record_shapes if tp_rank == 0 else None,
590
            bench_args.profile_filename_prefix,
591
592
593
594
595
596
597
598
599
600
        )
        if ret is not None:
            result_list.append(ret)

    # Write results in jsonlines format on rank 0.
    if tp_rank == 0 and bench_args.result_filename:
        with open(bench_args.result_filename, "a") as fout:
            for result in result_list:
                fout.write(json.dumps(result) + "\n")

Lianmin Zheng's avatar
Lianmin Zheng committed
601
602
603
    if server_args.tp_size > 1:
        destroy_distributed_environment()

604
605

def main(server_args, bench_args):
Lianmin Zheng's avatar
Lianmin Zheng committed
606
607
    server_args.cuda_graph_max_bs = max(bench_args.batch_size)

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    _set_envs_and_config(server_args)

    if server_args.model_path:
        if bench_args.correctness_test:
            work_func = correctness_test
        else:
            work_func = latency_test
    else:
        raise ValueError(
            "Provide --model-path for running the tests or "
            "provide --result-filename for plotting the results"
        )

    port_args = PortArgs.init_new(server_args)

    if server_args.tp_size == 1:
        work_func(server_args, port_args, bench_args, 0)
    else:
        workers = []
        for tp_rank in range(server_args.tp_size):
            proc = multiprocessing.Process(
                target=work_func,
                args=(
                    server_args,
                    port_args,
                    bench_args,
                    tp_rank,
                ),
            )
            proc.start()
            workers.append(proc)

        for proc in workers:
            proc.join()

        proc.terminate()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
    BenchArgs.add_cli_args(parser)
    args = parser.parse_args()
    server_args = ServerArgs.from_cli_args(args)
    bench_args = BenchArgs.from_cli_args(args)

    logging.basicConfig(
        level=getattr(logging, server_args.log_level.upper()),
        format="%(message)s",
    )

    try:
        main(server_args, bench_args)
    finally:
Lianmin Zheng's avatar
Lianmin Zheng committed
662
        if server_args.tp_size != 1:
663
            kill_process_tree(os.getpid(), include_parent=False)