bench_one_batch.py 17.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
"""
Benchmark the latency of running a single static batch without a server.

This script does not launch a server and uses the low-level APIs.
It accepts server arguments (the same as launch_server.py) and benchmark arguments (e.g., batch size, input lengths).

# Usage (latency test)
## with dummy weights:
python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3-8B-Instruct --load-format dummy
## sweep through multiple data points and store (append) the results in a jsonl file:
python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 1 12 14 --input-len 256 512 --output-len 32 256 --run-name test_run
12
13
## run with profiling:
python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 1 12 14 --input-len 256 512 --profile
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Usage (correctness test):
python -m sglang.bench_one_batch --model-path TinyLlama/TinyLlama-1.1B-Chat-v0.4 --correct

## Reference output (of the correctness test above, can be gpu dependent):
input_ids=[[1, 450, 7483, 310, 3444, 338], [1, 450, 7483, 310, 278, 3303, 13187, 290, 338], [1, 20628, 338, 263, 6575, 1460, 2462, 322, 306, 763]]

prefill logits (first half): tensor([[-10.0312,  -9.5000,   0.8931,  ...,  -4.9414,  -3.2422,  -3.3633],
        [-10.0312,  -9.5000,   0.8931,  ...,  -4.9414,  -3.2422,  -3.3633],
        [ -9.1875, -10.2500,   2.7129,  ...,  -4.3359,  -4.0664,  -4.1328]],
       device='cuda:0')

prefill logits (final): tensor([[-8.3125, -7.1172,  3.3457,  ..., -4.9570, -4.1328, -3.4141],
        [-8.9141, -9.0156,  4.1445,  ..., -4.9922, -4.4961, -4.0781],
        [-9.6328, -9.0547,  4.0195,  ..., -5.3047, -4.7148, -4.4570]],
       device='cuda:0')

========== Prompt 0 ==========
<s> The capital of France is Paris.
The capital of the United States is Washington, D.C.


========== Prompt 1 ==========
<s> The capital of the United Kindom is London.
The capital of the United Kingdom is London.
The capital of the

========== Prompt 2 ==========
<s> Today is a sunny day and I like to go for a walk in the park.
I'm going to the park
"""

import argparse
import dataclasses
import itertools
import json
import logging
import multiprocessing
51
import os
52
53
54
55
56
57
58
59
import time
from typing import Tuple

import numpy as np
import torch
import torch.distributed as dist

from sglang.srt.configs.model_config import ModelConfig
60
from sglang.srt.entrypoints.engine import _set_envs_and_config
61
62
63
64
65
66
from sglang.srt.hf_transformers_utils import get_tokenizer
from sglang.srt.managers.schedule_batch import Req, ScheduleBatch
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_executor.model_runner import ModelRunner
from sglang.srt.sampling.sampling_params import SamplingParams
from sglang.srt.server_args import PortArgs, ServerArgs
67
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
68
69
70
71
72
73
74
from sglang.srt.utils import (
    configure_logger,
    get_bool_env_var,
    kill_process_tree,
    set_gpu_proc_affinity,
    suppress_other_loggers,
)
75
76
77
78
79
80
81
82
83
84
85
86


@dataclasses.dataclass
class BenchArgs:
    run_name: str = "default"
    batch_size: Tuple[int] = (1,)
    input_len: Tuple[int] = (1024,)
    output_len: Tuple[int] = (16,)
    result_filename: str = "result.jsonl"
    correctness_test: bool = False
    # This is only used for correctness test
    cut_len: int = 4
87
88
    profile: bool = False
    profile_filename_prefix: str = "profile"
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
        parser.add_argument("--run-name", type=str, default=BenchArgs.run_name)
        parser.add_argument(
            "--batch-size", type=int, nargs="+", default=BenchArgs.batch_size
        )
        parser.add_argument(
            "--input-len", type=int, nargs="+", default=BenchArgs.input_len
        )
        parser.add_argument(
            "--output-len", type=int, nargs="+", default=BenchArgs.output_len
        )
        parser.add_argument(
            "--result-filename", type=str, default=BenchArgs.result_filename
        )
        parser.add_argument("--correctness-test", action="store_true")
        parser.add_argument("--cut-len", type=int, default=BenchArgs.cut_len)
107
        parser.add_argument(
108
            "--profile", action="store_true", help="Use Torch Profiler."
109
110
111
112
113
114
115
116
        )
        parser.add_argument(
            "--profile-filename-prefix",
            type=str,
            default=BenchArgs.profile_filename_prefix,
            help="Prefix of the profiling file names. The full profiling result file(s) be "
            '"[profile_filename_prefix]_batch[batch_size]_input[input_len]_output[output_len].trace.json.gz"',
        )
117
118
119

    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
fzyzcjy's avatar
fzyzcjy committed
120
        # use the default value's type to cast the args into correct types.
121
122
123
124
125
126
127
128
129
130
131
132
133
        attrs = [(attr.name, type(attr.default)) for attr in dataclasses.fields(cls)]
        return cls(
            **{attr: attr_type(getattr(args, attr)) for attr, attr_type in attrs}
        )


def load_model(server_args, port_args, tp_rank):
    suppress_other_loggers()
    rank_print = print if tp_rank == 0 else lambda *args, **kwargs: None

    model_config = ModelConfig(
        server_args.model_path,
        trust_remote_code=server_args.trust_remote_code,
134
        revision=server_args.revision,
135
136
        context_length=server_args.context_length,
        model_override_args=server_args.json_model_override_args,
137
138
139
        is_embedding=server_args.is_embedding,
        dtype=server_args.dtype,
        quantization=server_args.quantization,
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    )
    model_runner = ModelRunner(
        model_config=model_config,
        mem_fraction_static=server_args.mem_fraction_static,
        gpu_id=tp_rank,
        tp_rank=tp_rank,
        tp_size=server_args.tp_size,
        nccl_port=port_args.nccl_port,
        server_args=server_args,
    )
    rank_print(f"max_total_num_tokens={model_runner.max_total_num_tokens}")
    tokenizer = get_tokenizer(
        server_args.tokenizer_path,
        tokenizer_mode=server_args.tokenizer_mode,
        trust_remote_code=server_args.trust_remote_code,
    )
    if server_args.tp_size > 1:
        dist.barrier()
    return model_runner, tokenizer


def prepare_inputs_for_correctness_test(bench_args, tokenizer):
    prompts = [
        "The capital of France is",
        "The capital of the United Kindom is",
        "Today is a sunny day and I like",
    ]
    input_ids = [tokenizer.encode(p) for p in prompts]
    sampling_params = SamplingParams(
        temperature=0,
        max_new_tokens=BenchArgs.output_len,
    )

    reqs = []
    for i in range(len(prompts)):
        assert len(input_ids[i]) > bench_args.cut_len

        tmp_input_ids = input_ids[i][: bench_args.cut_len]
        req = Req(
            rid=i,
            origin_input_text=prompts[i],
            origin_input_ids=tmp_input_ids,
            sampling_params=sampling_params,
        )
        req.prefix_indices = []
        req.fill_ids = req.origin_input_ids
        req.extend_input_len = len(req.fill_ids) - len(req.prefix_indices)
        reqs.append(req)

    return input_ids, reqs


def prepare_extend_inputs_for_correctness_test(
    bench_args, input_ids, reqs, model_runner
):
    for i in range(len(reqs)):
        req = reqs[i]
        req.fill_ids += input_ids[i][bench_args.cut_len :]
        req.prefix_indices = model_runner.req_to_token_pool.req_to_token[
            i, : bench_args.cut_len
        ]
        req.extend_input_len = len(req.fill_ids) - len(req.prefix_indices)
    return reqs


def prepare_synthetic_inputs_for_latency_test(batch_size, input_len):
    input_ids = np.ones((batch_size, input_len), dtype=np.int32)
    sampling_params = SamplingParams(
        temperature=0,
        max_new_tokens=BenchArgs.output_len,
    )

    reqs = []
    for i in range(len(input_ids)):
        req = Req(
            rid=i,
            origin_input_text="",
            origin_input_ids=list(input_ids[i]),
            sampling_params=sampling_params,
        )
        req.prefix_indices = []
        req.fill_ids = req.origin_input_ids
        req.extend_input_len = len(req.fill_ids) - len(req.prefix_indices)
        reqs.append(req)

    return reqs


@torch.no_grad
def extend(reqs, model_runner):
    batch = ScheduleBatch.init_new(
        reqs=reqs,
        req_to_token_pool=model_runner.req_to_token_pool,
233
        token_to_kv_pool_allocator=model_runner.token_to_kv_pool_allocator,
234
235
        tree_cache=None,
        model_config=model_runner.model_config,
236
        enable_overlap=False,
237
        spec_algorithm=SpeculativeAlgorithm.NONE,
238
        enable_custom_logit_processor=False,
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    )
    batch.prepare_for_extend()
    model_worker_batch = batch.get_model_worker_batch()
    forward_batch = ForwardBatch.init_new(model_worker_batch, model_runner)
    logits_output = model_runner.forward(forward_batch)
    next_token_ids = model_runner.sample(logits_output, forward_batch)
    return next_token_ids, logits_output.next_token_logits, batch


@torch.no_grad
def decode(input_token_ids, batch, model_runner):
    batch.output_ids = input_token_ids
    batch.prepare_for_decode()
    model_worker_batch = batch.get_model_worker_batch()
    forward_batch = ForwardBatch.init_new(model_worker_batch, model_runner)
    logits_output = model_runner.forward(forward_batch)
    next_token_ids = model_runner.sample(logits_output, forward_batch)
    return next_token_ids, logits_output.next_token_logits


def correctness_test(
    server_args,
    port_args,
    bench_args,
    tp_rank,
):
    # Configure the logger
    configure_logger(server_args, prefix=f" TP{tp_rank}")
    rank_print = print if tp_rank == 0 else lambda *args, **kwargs: None

    # Load the model
    model_runner, tokenizer = load_model(server_args, port_args, tp_rank)

    # Prepare inputs
    input_ids, reqs = prepare_inputs_for_correctness_test(bench_args, tokenizer)
    rank_print(f"\n{input_ids=}\n")

    if bench_args.cut_len > 0:
        # Prefill
        next_token_ids, next_token_logits, batch = extend(reqs, model_runner)
        rank_print(f"prefill logits (first half): {next_token_logits} \n")

    # Prepare extend inputs
    reqs = prepare_extend_inputs_for_correctness_test(
        bench_args, input_ids, reqs, model_runner
    )

    # Extend (prefill w/ KV cache)
    next_token_ids, next_token_logits, batch = extend(reqs, model_runner)
    rank_print(f"prefill logits (final): {next_token_logits} \n")

    # Decode
    output_ids = [input_ids[i] + [next_token_ids[i]] for i in range(len(input_ids))]
    for _ in range(bench_args.output_len[0] - 1):
        next_token_ids, _ = decode(next_token_ids, batch, model_runner)
        next_token_ids_list = next_token_ids.tolist()
        for i in range(len(reqs)):
            output_ids[i].append(next_token_ids_list[i])

    # Print output texts
    for i in range(len(reqs)):
        rank_print(f"========== Prompt {i} ==========")
        rank_print(tokenizer.decode(output_ids[i]), "\n")


def synchronize(device):
305
    torch.get_device_module(device).synchronize()
306
307
308


def latency_test_run_once(
309
310
311
312
313
314
315
316
317
318
    run_name,
    model_runner,
    rank_print,
    reqs,
    batch_size,
    input_len,
    output_len,
    device,
    profile,
    profile_filename_prefix,
319
320
321
322
323
324
325
326
327
328
):
    max_batch_size = model_runner.max_total_num_tokens // (input_len + output_len)
    if batch_size > max_batch_size:
        rank_print(
            f"skipping ({batch_size}, {input_len}, {output_len}) due to max batch size limit"
        )
        return

    # Clear the pools.
    model_runner.req_to_token_pool.clear()
329
    model_runner.token_to_kv_pool_allocator.clear()
330
331
332
333
334
335
336
337
338
339

    measurement_results = {
        "run_name": run_name,
        "batch_size": batch_size,
        "input_len": input_len,
        "output_len": output_len,
    }

    tot_latency = 0

340
341
342
343
344
345
346
347
348
349
350
    profiler = None
    if profile:
        profiler = torch.profiler.profile(
            activities=[
                torch.profiler.ProfilerActivity.CPU,
                torch.profiler.ProfilerActivity.CUDA,
            ],
            with_stack=True,
        )
        profiler.start()

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    # Prefill
    synchronize(device)
    tic = time.time()
    next_token_ids, _, batch = extend(reqs, model_runner)
    synchronize(device)
    prefill_latency = time.time() - tic
    tot_latency += prefill_latency
    throughput = input_len * batch_size / prefill_latency
    rank_print(
        f"Prefill. latency: {prefill_latency:6.5f} s, throughput: {throughput:9.2f} token/s"
    )
    measurement_results["prefill_latency"] = prefill_latency
    measurement_results["prefill_throughput"] = throughput

    # Decode
    decode_latencies = []
    for i in range(output_len - 1):
        synchronize(device)
        tic = time.time()
        next_token_ids, _ = decode(next_token_ids, batch, model_runner)
        synchronize(device)
        latency = time.time() - tic
        tot_latency += latency
        throughput = batch_size / latency
        decode_latencies.append(latency)
        if i < 5:
            rank_print(
                f"Decode.  latency: {latency:6.5f} s, throughput: {throughput:9.2f} token/s"
            )

381
382
383
384
385
386
    if profile:
        profiler.stop()
        profile_filename = f"{profile_filename_prefix}_batch{batch_size}_input{input_len}_output{output_len}.trace.json.gz"
        parent_dir = os.path.dirname(os.path.abspath(profile_filename))
        os.makedirs(parent_dir, exist_ok=True)
        profiler.export_chrome_trace(profile_filename)
387
        rank_print(f"torch profiler chrome trace saved to {profile_filename}")
388

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
    # Record decode timing from 2nd output
    if output_len > 1:
        med_decode_latency = np.median(decode_latencies)
        med_decode_throughput = batch_size / med_decode_latency
        rank_print(
            f"Decode.  median latency: {med_decode_latency:6.5f} s, median throughput: {med_decode_throughput:9.2f} token/s"
        )
        measurement_results["median_decode_latency"] = med_decode_latency
        measurement_results["median_decode_throughput"] = med_decode_throughput

    throughput = (input_len + output_len) * batch_size / tot_latency
    rank_print(
        f"Total. latency: {tot_latency:6.3f} s, throughput: {throughput:9.2f} token/s"
    )
    measurement_results["total_latency"] = tot_latency
    measurement_results["overall_throughput"] = throughput
    return measurement_results


def latency_test(
    server_args,
    port_args,
    bench_args,
    tp_rank,
):
414
415
416
417
    # Set CPU affinity
    if get_bool_env_var("SGLANG_SET_CPU_AFFINITY"):
        set_gpu_proc_affinity(server_args.tp_size, server_args.nnodes, tp_rank)

418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    # Configure the logger
    configure_logger(server_args, prefix=f" TP{tp_rank}")
    rank_print = print if tp_rank == 0 else lambda *args, **kwargs: None

    # Load the model
    model_runner, tokenizer = load_model(server_args, port_args, tp_rank)

    # Prepare inputs for warm up
    reqs = prepare_synthetic_inputs_for_latency_test(
        bench_args.batch_size[0], bench_args.input_len[0]
    )

    # Warm up
    rank_print("Warmup ...")
    latency_test_run_once(
        bench_args.run_name,
        model_runner,
        rank_print,
        reqs,
        bench_args.batch_size[0],
        bench_args.input_len[0],
        8,  # shorter decoding to speed up the warmup
        server_args.device,
441
442
        profile=False,
        profile_filename_prefix="",  # not used
443
    )
444

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    rank_print("Benchmark ...")

    # Run the sweep
    result_list = []
    for bs, il, ol in itertools.product(
        bench_args.batch_size, bench_args.input_len, bench_args.output_len
    ):
        reqs = prepare_synthetic_inputs_for_latency_test(bs, il)
        ret = latency_test_run_once(
            bench_args.run_name,
            model_runner,
            rank_print,
            reqs,
            bs,
            il,
            ol,
            server_args.device,
462
            bench_args.profile if tp_rank == 0 else None,
463
            bench_args.profile_filename_prefix,
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        )
        if ret is not None:
            result_list.append(ret)

    # Write results in jsonlines format on rank 0.
    if tp_rank == 0 and bench_args.result_filename:
        with open(bench_args.result_filename, "a") as fout:
            for result in result_list:
                fout.write(json.dumps(result) + "\n")


def main(server_args, bench_args):
    _set_envs_and_config(server_args)

    if server_args.model_path:
        if bench_args.correctness_test:
            work_func = correctness_test
        else:
            work_func = latency_test
    else:
        raise ValueError(
            "Provide --model-path for running the tests or "
            "provide --result-filename for plotting the results"
        )

    port_args = PortArgs.init_new(server_args)

    if server_args.tp_size == 1:
        work_func(server_args, port_args, bench_args, 0)
    else:
        workers = []
        for tp_rank in range(server_args.tp_size):
            proc = multiprocessing.Process(
                target=work_func,
                args=(
                    server_args,
                    port_args,
                    bench_args,
                    tp_rank,
                ),
            )
            proc.start()
            workers.append(proc)

        for proc in workers:
            proc.join()

        proc.terminate()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
    BenchArgs.add_cli_args(parser)
    args = parser.parse_args()
    server_args = ServerArgs.from_cli_args(args)
    bench_args = BenchArgs.from_cli_args(args)

    logging.basicConfig(
        level=getattr(logging, server_args.log_level.upper()),
        format="%(message)s",
    )

    try:
        main(server_args, bench_args)
    finally:
Lianmin Zheng's avatar
Lianmin Zheng committed
530
        if server_args.tp_size != 1:
531
            kill_process_tree(os.getpid(), include_parent=False)