test_openai_server.py 23 KB
Newer Older
1
2
3
4
5
"""
python3 -m unittest test_openai_server.TestOpenAIServer.test_batch
python3 -m unittest test_openai_server.TestOpenAIServer.test_completion

"""
Chayenne's avatar
Chayenne committed
6

7
import json
8
import re
9
import time
10
import unittest
11
12

import openai
13

yichuan~'s avatar
yichuan~ committed
14
from sglang.srt.hf_transformers_utils import get_tokenizer
15
from sglang.srt.utils import kill_process_tree
16
from sglang.test.test_utils import (
Lianmin Zheng's avatar
Lianmin Zheng committed
17
    DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
18
19
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
20
21
    popen_launch_server,
)
22
23
24
25
26


class TestOpenAIServer(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
Lianmin Zheng's avatar
Lianmin Zheng committed
27
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
28
        cls.base_url = DEFAULT_URL_FOR_TEST
29
30
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
31
32
33
34
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
35
        )
36
        cls.base_url += "/v1"
Lianmin Zheng's avatar
Lianmin Zheng committed
37
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)
38
39
40

    @classmethod
    def tearDownClass(cls):
41
        kill_process_tree(cls.process.pid)
42

yichuan~'s avatar
yichuan~ committed
43
44
45
    def run_completion(
        self, echo, logprobs, use_list_input, parallel_sample_num, token_input
    ):
46
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
47
        prompt = "The capital of France is"
yichuan~'s avatar
yichuan~ committed
48
49
50
51
52
53
        if token_input:
            prompt_input = self.tokenizer.encode(prompt)
            num_prompt_tokens = len(prompt_input)
        else:
            prompt_input = prompt
            num_prompt_tokens = len(self.tokenizer.encode(prompt))
54
55

        if use_list_input:
yichuan~'s avatar
yichuan~ committed
56
            prompt_arg = [prompt_input, prompt_input]
57
            num_choices = len(prompt_arg)
yichuan~'s avatar
yichuan~ committed
58
            num_prompt_tokens *= 2
59
        else:
yichuan~'s avatar
yichuan~ committed
60
            prompt_arg = prompt_input
61
62
            num_choices = 1

63
64
        response = client.completions.create(
            model=self.model,
65
            prompt=prompt_arg,
yichuan~'s avatar
yichuan~ committed
66
            temperature=0,
67
68
69
            max_tokens=32,
            echo=echo,
            logprobs=logprobs,
yichuan~'s avatar
yichuan~ committed
70
            n=parallel_sample_num,
71
        )
72

yichuan~'s avatar
yichuan~ committed
73
        assert len(response.choices) == num_choices * parallel_sample_num
74

Cody Yu's avatar
Cody Yu committed
75
        if echo:
76
            text = response.choices[0].text
77
            assert text.startswith(prompt)
yichuan~'s avatar
yichuan~ committed
78

Cody Yu's avatar
Cody Yu committed
79
        if logprobs:
80
81
82
            assert response.choices[0].logprobs
            assert isinstance(response.choices[0].logprobs.tokens[0], str)
            assert isinstance(response.choices[0].logprobs.top_logprobs[1], dict)
83
            ret_num_top_logprobs = len(response.choices[0].logprobs.top_logprobs[1])
84

85
            # FIXME: Sometimes, some top_logprobs are missing in the return value. The reason is that some output id maps to the same output token and duplicate in the map
86
            # assert ret_num_top_logprobs == logprobs, f"{ret_num_top_logprobs} vs {logprobs}"
yichuan~'s avatar
yichuan~ committed
87
            assert ret_num_top_logprobs > 0
88

89
90
91
            # when echo=True and request.logprobs>0, logprob_start_len is 0, so the first token's logprob would be None.
            if not echo:
                assert response.choices[0].logprobs.token_logprobs[0]
yichuan~'s avatar
yichuan~ committed
92

93
94
        assert response.id
        assert response.created
yichuan~'s avatar
yichuan~ committed
95
96
97
        assert (
            response.usage.prompt_tokens == num_prompt_tokens
        ), f"{response.usage.prompt_tokens} vs {num_prompt_tokens}"
98
99
100
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

101
102
103
    def run_completion_stream(
        self, echo, logprobs, use_list_input, parallel_sample_num, token_input
    ):
104
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
105
        prompt = "The capital of France is"
yichuan~'s avatar
yichuan~ committed
106
        if token_input:
107
108
            prompt_input = self.tokenizer.encode(prompt)
            num_prompt_tokens = len(prompt_input)
yichuan~'s avatar
yichuan~ committed
109
        else:
110
111
112
113
114
115
116
117
118
119
120
            prompt_input = prompt
            num_prompt_tokens = len(self.tokenizer.encode(prompt))

        if use_list_input:
            prompt_arg = [prompt_input, prompt_input]
            num_choices = len(prompt_arg)
            num_prompt_tokens *= 2
        else:
            prompt_arg = prompt_input
            num_choices = 1

121
122
        generator = client.completions.create(
            model=self.model,
yichuan~'s avatar
yichuan~ committed
123
124
            prompt=prompt_arg,
            temperature=0,
125
126
127
128
            max_tokens=32,
            echo=echo,
            logprobs=logprobs,
            stream=True,
129
            stream_options={"include_usage": True},
130
            n=parallel_sample_num,
131
132
        )

133
        is_firsts = {}
134
        for response in generator:
135
136
137
138
139
140
            usage = response.usage
            if usage is not None:
                assert usage.prompt_tokens > 0
                assert usage.completion_tokens > 0
                assert usage.total_tokens > 0
                continue
141
142
143
144

            index = response.choices[0].index
            is_first = is_firsts.get(index, True)

145
146
147
            if logprobs:
                assert response.choices[0].logprobs
                assert isinstance(response.choices[0].logprobs.tokens[0], str)
148
                if not (is_first and echo):
149
150
151
152
153
154
                    assert isinstance(
                        response.choices[0].logprobs.top_logprobs[0], dict
                    )
                    ret_num_top_logprobs = len(
                        response.choices[0].logprobs.top_logprobs[0]
                    )
155
                    # FIXME: Sometimes, some top_logprobs are missing in the return value. The reason is that some output id maps to the same output token and duplicate in the map
156
                    # assert ret_num_top_logprobs == logprobs, f"{ret_num_top_logprobs} vs {logprobs}"
yichuan~'s avatar
yichuan~ committed
157
                    assert ret_num_top_logprobs > 0
158

159
            if is_first:
160
                if echo:
yichuan~'s avatar
yichuan~ committed
161
162
                    assert response.choices[0].text.startswith(
                        prompt
163
164
                    ), f"{response.choices[0].text} and all args {echo} {logprobs} {token_input} {is_first}"
                is_firsts[index] = False
165
166
167
            assert response.id
            assert response.created

168
169
170
171
172
        for index in [i for i in range(parallel_sample_num * num_choices)]:
            assert not is_firsts.get(
                index, True
            ), f"index {index} is not found in the response"

yichuan~'s avatar
yichuan~ committed
173
    def run_chat_completion(self, logprobs, parallel_sample_num):
174
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
175
176
177
178
        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
Ying Sheng's avatar
Ying Sheng committed
179
180
181
182
                {
                    "role": "user",
                    "content": "What is the capital of France? Answer in a few words.",
                },
183
184
185
186
            ],
            temperature=0,
            logprobs=logprobs is not None and logprobs > 0,
            top_logprobs=logprobs,
yichuan~'s avatar
yichuan~ committed
187
            n=parallel_sample_num,
188
        )
Ying Sheng's avatar
Ying Sheng committed
189

190
191
192
193
194
195
196
197
198
199
200
        if logprobs:
            assert isinstance(
                response.choices[0].logprobs.content[0].top_logprobs[0].token, str
            )

            ret_num_top_logprobs = len(
                response.choices[0].logprobs.content[0].top_logprobs
            )
            assert (
                ret_num_top_logprobs == logprobs
            ), f"{ret_num_top_logprobs} vs {logprobs}"
Ying Sheng's avatar
Ying Sheng committed
201

yichuan~'s avatar
yichuan~ committed
202
        assert len(response.choices) == parallel_sample_num
203
204
205
206
207
208
209
210
        assert response.choices[0].message.role == "assistant"
        assert isinstance(response.choices[0].message.content, str)
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

211
    def run_chat_completion_stream(self, logprobs, parallel_sample_num=1):
212
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
213
214
215
216
217
218
219
220
221
222
        generator = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "What is the capital of France?"},
            ],
            temperature=0,
            logprobs=logprobs is not None and logprobs > 0,
            top_logprobs=logprobs,
            stream=True,
223
            stream_options={"include_usage": True},
224
            n=parallel_sample_num,
225
226
        )

227
        is_firsts = {}
228
        for response in generator:
229
230
231
232
233
234
235
            usage = response.usage
            if usage is not None:
                assert usage.prompt_tokens > 0
                assert usage.completion_tokens > 0
                assert usage.total_tokens > 0
                continue

236
            index = response.choices[0].index
237
            data = response.choices[0].delta
238

239
240
241
            if is_firsts.get(index, True):
                assert data.role == "assistant"
                is_firsts[index] = False
242
243
244
                continue

            if logprobs:
yichuan~'s avatar
yichuan~ committed
245
246
247
248
249
250
251
252
253
254
255
256
257
                assert response.choices[0].logprobs
                assert isinstance(
                    response.choices[0].logprobs.content[0].top_logprobs[0].token, str
                )
                assert isinstance(
                    response.choices[0].logprobs.content[0].top_logprobs, list
                )
                ret_num_top_logprobs = len(
                    response.choices[0].logprobs.content[0].top_logprobs
                )
                assert (
                    ret_num_top_logprobs == logprobs
                ), f"{ret_num_top_logprobs} vs {logprobs}"
258
259
260
261
262

            assert isinstance(data.content, str)
            assert response.id
            assert response.created

263
264
265
266
267
        for index in [i for i in range(parallel_sample_num)]:
            assert not is_firsts.get(
                index, True
            ), f"index {index} is not found in the response"

268
    def _create_batch(self, mode, client):
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
        if mode == "completion":
            input_file_path = "complete_input.jsonl"
            # write content to input file
            content = [
                {
                    "custom_id": "request-1",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 3 names of famous soccer player: ",
                        "max_tokens": 20,
                    },
                },
                {
                    "custom_id": "request-2",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 6 names of famous basketball player:  ",
                        "max_tokens": 40,
                    },
                },
                {
                    "custom_id": "request-3",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 6 names of famous tenniss player:  ",
                        "max_tokens": 40,
                    },
                },
            ]

        else:
            input_file_path = "chat_input.jsonl"
            content = [
                {
                    "custom_id": "request-1",
                    "method": "POST",
                    "url": "/v1/chat/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-0125",
                        "messages": [
                            {
                                "role": "system",
                                "content": "You are a helpful assistant.",
                            },
                            {
                                "role": "user",
                                "content": "Hello! List 3 NBA players and tell a story",
                            },
                        ],
                        "max_tokens": 30,
                    },
                },
                {
                    "custom_id": "request-2",
                    "method": "POST",
                    "url": "/v1/chat/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-0125",
                        "messages": [
                            {"role": "system", "content": "You are an assistant. "},
                            {
                                "role": "user",
                                "content": "Hello! List three capital and tell a story",
                            },
                        ],
                        "max_tokens": 50,
                    },
                },
            ]
344

345
346
347
        with open(input_file_path, "w") as file:
            for line in content:
                file.write(json.dumps(line) + "\n")
348

349
350
351
352
353
354
355
356
357
358
359
360
        with open(input_file_path, "rb") as file:
            uploaded_file = client.files.create(file=file, purpose="batch")
        if mode == "completion":
            endpoint = "/v1/completions"
        elif mode == "chat":
            endpoint = "/v1/chat/completions"
        completion_window = "24h"
        batch_job = client.batches.create(
            input_file_id=uploaded_file.id,
            endpoint=endpoint,
            completion_window=completion_window,
        )
361

362
        return batch_job, content, uploaded_file
363
364
365

    def run_batch(self, mode):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
366
        batch_job, content, uploaded_file = self._create_batch(mode=mode, client=client)
367

368
369
370
371
372
373
        while batch_job.status not in ["completed", "failed", "cancelled"]:
            time.sleep(3)
            print(
                f"Batch job status: {batch_job.status}...trying again in 3 seconds..."
            )
            batch_job = client.batches.retrieve(batch_job.id)
374
375
376
        assert (
            batch_job.status == "completed"
        ), f"Batch job status is not completed: {batch_job.status}"
377
378
379
380
381
382
        assert batch_job.request_counts.completed == len(content)
        assert batch_job.request_counts.failed == 0
        assert batch_job.request_counts.total == len(content)

        result_file_id = batch_job.output_file_id
        file_response = client.files.content(result_file_id)
yichuan~'s avatar
yichuan~ committed
383
384
385
386
387
388
        result_content = file_response.read().decode("utf-8")  # Decode bytes to string
        results = [
            json.loads(line)
            for line in result_content.split("\n")
            if line.strip() != ""
        ]
389
        assert len(results) == len(content)
390
391
392
        for delete_fid in [uploaded_file.id, result_file_id]:
            del_pesponse = client.files.delete(delete_fid)
            assert del_pesponse.deleted
393

394
395
    def run_cancel_batch(self, mode):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
396
        batch_job, _, uploaded_file = self._create_batch(mode=mode, client=client)
397
398
399
400
401
402
403
404
405
406
407
408
409
410

        assert batch_job.status not in ["cancelling", "cancelled"]

        batch_job = client.batches.cancel(batch_id=batch_job.id)
        assert batch_job.status == "cancelling"

        while batch_job.status not in ["failed", "cancelled"]:
            batch_job = client.batches.retrieve(batch_job.id)
            print(
                f"Batch job status: {batch_job.status}...trying again in 3 seconds..."
            )
            time.sleep(3)

        assert batch_job.status == "cancelled"
411
412
        del_response = client.files.delete(uploaded_file.id)
        assert del_response.deleted
413

414
415
416
    def test_completion(self):
        for echo in [False, True]:
            for logprobs in [None, 5]:
417
                for use_list_input in [True, False]:
yichuan~'s avatar
yichuan~ committed
418
419
420
421
422
423
424
425
426
                    for parallel_sample_num in [1, 2]:
                        for token_input in [False, True]:
                            self.run_completion(
                                echo,
                                logprobs,
                                use_list_input,
                                parallel_sample_num,
                                token_input,
                            )
427
428

    def test_completion_stream(self):
yichuan~'s avatar
yichuan~ committed
429
        # parallel sampling adn list input are not supported in streaming mode
430
431
        for echo in [False, True]:
            for logprobs in [None, 5]:
432
433
434
435
436
437
438
439
440
441
                for use_list_input in [True, False]:
                    for parallel_sample_num in [1, 2]:
                        for token_input in [False, True]:
                            self.run_completion_stream(
                                echo,
                                logprobs,
                                use_list_input,
                                parallel_sample_num,
                                token_input,
                            )
442

443
444
    def test_chat_completion(self):
        for logprobs in [None, 5]:
yichuan~'s avatar
yichuan~ committed
445
446
            for parallel_sample_num in [1, 2]:
                self.run_chat_completion(logprobs, parallel_sample_num)
447
448
449

    def test_chat_completion_stream(self):
        for logprobs in [None, 5]:
450
451
            for parallel_sample_num in [1, 2]:
                self.run_chat_completion_stream(logprobs, parallel_sample_num)
452

453
454
455
456
    def test_batch(self):
        for mode in ["completion", "chat"]:
            self.run_batch(mode)

457
    def test_cancel_batch(self):
458
459
460
        for mode in ["completion", "chat"]:
            self.run_cancel_batch(mode)

461
    def test_regex(self):
462
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

        regex = (
            r"""\{\n"""
            + r"""   "name": "[\w]+",\n"""
            + r"""   "population": [\d]+\n"""
            + r"""\}"""
        )

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "Introduce the capital of France."},
            ],
            temperature=0,
            max_tokens=128,
            extra_body={"regex": regex},
        )
        text = response.choices[0].message.content

        try:
            js_obj = json.loads(text)
        except (TypeError, json.decoder.JSONDecodeError):
            print("JSONDecodeError", text)
            raise
        assert isinstance(js_obj["name"], str)
        assert isinstance(js_obj["population"], int)

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    def test_penalty(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "Introduce the capital of France."},
            ],
            temperature=0,
            max_tokens=32,
            frequency_penalty=1.0,
        )
        text = response.choices[0].message.content
        assert isinstance(text, str)

507
508
509
510
    def test_response_prefill(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
511
            model="meta-llama/Llama-3.1-8B-Instruct",
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {
                    "role": "user",
                    "content": """
Extract the name, size, price, and color from this product description as a JSON object:

<description>
The SmartHome Mini is a compact smart home assistant available in black or white for only $49.99. At just 5 inches wide, it lets you control lights, thermostats, and other connected devices via voice or app—no matter where you place it in your home. This affordable little hub brings convenient hands-free control to your smart devices.
</description>
""",
                },
                {
                    "role": "assistant",
                    "content": "{\n",
                },
            ],
            temperature=0,
        )

        assert (
            response.choices[0]
            .message.content.strip()
            .startswith('"name": "SmartHome Mini",')
        )

538

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
# -------------------------------------------------------------------------
#    EBNF Test Class: TestOpenAIServerEBNF
#    Launches the server with xgrammar, has only EBNF tests
# -------------------------------------------------------------------------
class TestOpenAIServerEBNF(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"

        # passing xgrammar specifically
        other_args = ["--grammar-backend", "xgrammar"]
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=other_args,
        )
        cls.base_url += "/v1"
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_ebnf(self):
        """
        Ensure we can pass `ebnf` to the local openai server
        and that it enforces the grammar.
        """
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        ebnf_grammar = r"""
        root ::= "Hello" | "Hi" | "Hey"
        """
        pattern = re.compile(r"^(Hello|Hi|Hey)[.!?]*\s*$")

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful EBNF test bot."},
                {"role": "user", "content": "Say a greeting (Hello, Hi, or Hey)."},
            ],
            temperature=0,
            max_tokens=32,
            extra_body={"ebnf": ebnf_grammar},
        )
        text = response.choices[0].message.content.strip()
        print("EBNF test output:", repr(text))
        self.assertTrue(len(text) > 0, "Got empty text from EBNF generation")
        self.assertRegex(text, pattern, f"Text '{text}' doesn't match EBNF choices")

    def test_ebnf_strict_json(self):
        """
        A stricter EBNF that produces exactly {"name":"Alice"} format
        with no trailing punctuation or extra fields.
        """
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        ebnf_grammar = r"""
        root    ::= "{" pair "}"
        pair    ::= "\"name\"" ":" string
        string  ::= "\"" [A-Za-z]+ "\""
        """
        pattern = re.compile(r'^\{"name":"[A-Za-z]+"\}$')

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "EBNF mini-JSON generator."},
                {
                    "role": "user",
                    "content": "Generate single key JSON with only letters.",
                },
            ],
            temperature=0,
            max_tokens=64,
            extra_body={"ebnf": ebnf_grammar},
        )
        text = response.choices[0].message.content.strip()
        print("EBNF strict JSON test output:", repr(text))
        self.assertTrue(len(text) > 0, "Got empty text from EBNF strict JSON test")
        self.assertRegex(
            text, pattern, f"Text '{text}' not matching the EBNF strict JSON shape"
        )


626
if __name__ == "__main__":
Lianmin Zheng's avatar
Lianmin Zheng committed
627
    unittest.main()