test_eagle_infer.py 18.3 KB
Newer Older
1
import json
2
import os
3
import random
4
import threading
5
import time
6
import unittest
7
8
from concurrent.futures import ThreadPoolExecutor
from functools import partial
9
from types import SimpleNamespace
10

11
import numpy as np
12
import requests
13
import torch
14

15
import sglang as sgl
16
from sglang.srt.hf_transformers_utils import get_tokenizer
17
from sglang.srt.utils import kill_process_tree
18
from sglang.test.few_shot_gsm8k import run_eval
19
from sglang.test.test_utils import (
20
21
    DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
    DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
22
23
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
24
    CustomTestCase,
25
    popen_launch_server,
26
    run_logprob_check,
27
)
28

29
30
31
torch_dtype = torch.float16
prefill_tolerance = 5e-2
decode_tolerance: float = 5e-2
32

33

34
class TestEAGLEEngine(CustomTestCase):
35
36
37
38
39
    BASE_CONFIG = {
        "model_path": DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
        "speculative_draft_model_path": DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
        "speculative_algorithm": "EAGLE",
        "speculative_num_steps": 5,
40
41
        "speculative_eagle_topk": 4,
        "speculative_num_draft_tokens": 8,
42
        "mem_fraction_static": 0.7,
Lianmin Zheng's avatar
Lianmin Zheng committed
43
        "cuda_graph_max_bs": 5,
44
    }
45
    NUM_CONFIGS = 2
46

47
48
49
    def setUp(self):
        self.prompt = "Today is a sunny day and I like"
        self.sampling_params = {"temperature": 0, "max_new_tokens": 8}
50

51
52
53
        ref_engine = sgl.Engine(
            model_path=self.BASE_CONFIG["model_path"], cuda_graph_max_bs=1
        )
54
        self.ref_output = ref_engine.generate(self.prompt, self.sampling_params)["text"]
55
56
        ref_engine.shutdown()

57
    def test_correctness(self):
58
        configs = [
59
            # Basic config
60
            self.BASE_CONFIG,
61
62
            # Chunked prefill
            {**self.BASE_CONFIG, "chunked_prefill_size": 4},
63
        ]
64

65
66
67
68
        for i, config in enumerate(configs[: self.NUM_CONFIGS]):
            with self.subTest(i=i):
                print(f"{config=}")
                engine = sgl.Engine(**config, log_level="info", decode_log_interval=10)
69
                try:
70
                    self._test_single_generation(engine)
71
                    self._test_batch_generation(engine)
72
73
                    self._test_eos_token(engine)
                    self._test_acc_length(engine)
74
75
                finally:
                    engine.shutdown()
76
                print("=" * 100)
77

78
    def _test_single_generation(self, engine):
79
80
81
82
        output = engine.generate(self.prompt, self.sampling_params)["text"]
        print(f"{output=}, {self.ref_output=}")
        self.assertEqual(output, self.ref_output)

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    def _test_batch_generation(self, engine):
        prompts = [
            "Hello, my name is",
            "The president of the United States is",
            "The capital of France is",
            "The future of AI is",
        ]
        params = {"temperature": 0, "max_new_tokens": 50}

        outputs = engine.generate(prompts, params)
        for prompt, output in zip(prompts, outputs):
            print(f"Prompt: {prompt}")
            print(f"Generated: {output['text']}")
            print("-" * 40)

        print(f"{engine.get_server_info()=}")

100
101
102
        avg_spec_accept_length = engine.get_server_info()["internal_states"][0][
            "avg_spec_accept_length"
        ]
103
104
105
        print(f"{avg_spec_accept_length=}")
        self.assertGreater(avg_spec_accept_length, 1.9)

106
107
108
    def _test_eos_token(self, engine):
        prompt = "[INST] <<SYS>>\nYou are a helpful assistant.\n<</SYS>>\nToday is a sunny day and I like [/INST]"
        params = {
109
            "temperature": 0.1,
110
111
112
113
114
115
116
117
118
119
120
            "max_new_tokens": 1024,
            "skip_special_tokens": False,
        }

        tokenizer = get_tokenizer(DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST)
        output = engine.generate(prompt, params)["text"]
        print(f"{output=}")

        tokens = tokenizer.encode(output, truncation=False)
        self.assertNotIn(tokenizer.eos_token_id, tokens)

121
122
    def _test_acc_length(self, engine):
        prompt = [
123
124
            "Human: Give me a fully functional FastAPI server. Show the python code.\n\nAssistant:",
        ] * 5  # test batched generation
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        sampling_params = {"temperature": 0, "max_new_tokens": 512}
        output = engine.generate(prompt, sampling_params)
        output = output[0]

        if "spec_verify_ct" in output["meta_info"]:
            acc_length = (
                output["meta_info"]["completion_tokens"]
                / output["meta_info"]["spec_verify_ct"]
            )
        else:
            acc_length = 1.0

        speed = (
            output["meta_info"]["completion_tokens"]
            / output["meta_info"]["e2e_latency"]
        )
        print(f"{acc_length=}")
142
143
144
145

        if engine.server_args.model_path == DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST:
            self.assertGreater(acc_length, 3.6)
        else:
146
            self.assertGreater(acc_length, 2.5)
147

148

149
class TestEAGLEEngineTokenMap(TestEAGLEEngine):
150
151
152
153
154
155
156
157
158
    BASE_CONFIG = {
        "model_path": "meta-llama/Meta-Llama-3-8B-Instruct",
        "speculative_draft_model_path": "lmsys/sglang-EAGLE-LLaMA3-Instruct-8B",
        "speculative_algorithm": "EAGLE",
        "speculative_num_steps": 5,
        "speculative_eagle_topk": 4,
        "speculative_num_draft_tokens": 8,
        "speculative_token_map": "thunlp/LLaMA3-Instruct-8B-FR-Spec/freq_32768.pt",
        "mem_fraction_static": 0.7,
Lianmin Zheng's avatar
Lianmin Zheng committed
159
        "cuda_graph_max_bs": 5,
160
        "dtype": "float16",
161
162
    }
    NUM_CONFIGS = 1
163
164


James Liu's avatar
James Liu committed
165
166
167
168
169
170
171
172
173
class TestEAGLE3Engine(TestEAGLEEngine):
    BASE_CONFIG = {
        "model_path": "meta-llama/Llama-3.1-8B-Instruct",
        "speculative_draft_model_path": "jamesliu1/sglang-EAGLE3-Llama-3.1-Instruct-8B",
        "speculative_algorithm": "EAGLE3",
        "speculative_num_steps": 5,
        "speculative_eagle_topk": 16,
        "speculative_num_draft_tokens": 64,
        "mem_fraction_static": 0.7,
Lianmin Zheng's avatar
Lianmin Zheng committed
174
        "cuda_graph_max_bs": 5,
James Liu's avatar
James Liu committed
175
176
177
178
179
        "dtype": "float16",
    }
    NUM_CONFIGS = 1


180
class TestEAGLEServer(CustomTestCase):
181
182
183
184
185
186
187
188
    PROMPTS = [
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nToday is a sunny day and I like[/INST]"
        '[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nWhat are the mental triggers in Jeff Walker\'s Product Launch Formula and "Launch" book?[/INST]',
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nSummarize Russell Brunson's Perfect Webinar Script...[/INST]",
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nwho are you?[/INST]",
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nwhere are you from?[/INST]",
    ]

189
190
191
192
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
193
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
194
195
196
197
198
199
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
200
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
201
                "--speculative-num-steps",
202
                5,
203
                "--speculative-eagle-topk",
204
                8,
205
                "--speculative-num-draft-tokens",
206
                64,
207
                "--mem-fraction-static",
208
                0.7,
209
                "--chunked-prefill-size",
210
211
212
                128,
                "--max-running-requests",
                8,
213
214
215
216
217
218
219
            ],
        )

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

220
221
    def send_request(self):
        time.sleep(random.uniform(0, 2))
222
        for prompt in self.PROMPTS:
223
224
225
226
227
228
229
230
231
232
233
234
            url = self.base_url + "/generate"
            data = {
                "text": prompt,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": 1024,
                },
            }
            response = requests.post(url, json=data)
            assert response.status_code == 200

    def send_requests_abort(self):
235
        for prompt in self.PROMPTS:
236
237
238
239
240
241
242
243
244
245
246
            try:
                time.sleep(random.uniform(0, 2))
                url = self.base_url + "/generate"
                data = {
                    "model": "base",
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 1024,
                    },
                }
247
                # set timeout = 1s, mock disconnected
248
249
250
251
252
253
                requests.post(url, json=data, timeout=1)
            except Exception as e:
                print(e)
                pass

    def test_request_abort(self):
254
        concurrency = 4
255
256
        threads = [
            threading.Thread(target=self.send_request) for _ in range(concurrency)
257
        ] + [
258
            threading.Thread(target=self.send_requests_abort)
259
260
            for _ in range(concurrency)
        ]
261
        for worker in threads:
262
            worker.start()
263
        for p in threads:
264
265
            p.join()

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    def test_max_token_one(self):
        requests.get(self.base_url + "/flush_cache")

        args = SimpleNamespace(
            num_shots=5,
            data_path=None,
            num_questions=200,
            max_new_tokens=1,
            parallel=128,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
        )

        # Just run and check it does not hang
        metrics = run_eval(args)
        self.assertGreater(metrics["output_throughput"], 50)

283
    def test_gsm8k(self):
284
        requests.get(self.base_url + "/flush_cache")
285

286
287
288
289
290
291
292
293
294
        args = SimpleNamespace(
            num_shots=5,
            data_path=None,
            num_questions=200,
            max_new_tokens=512,
            parallel=128,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
        )
295

296
297
298
299
        metrics = run_eval(args)
        print(f"{metrics=}")
        self.assertGreater(metrics["accuracy"], 0.20)

300
        server_info = requests.get(self.base_url + "/get_server_info").json()
301
302
303
        avg_spec_accept_length = server_info["internal_states"][0][
            "avg_spec_accept_length"
        ]
304
        print(f"{avg_spec_accept_length=}")
305
306
307
308
309
310
311

        speculative_eagle_topk = server_info["speculative_eagle_topk"]

        if speculative_eagle_topk == 1:
            self.assertGreater(avg_spec_accept_length, 2.5)
        else:
            self.assertGreater(avg_spec_accept_length, 3.5)
312

313
314
        # Wait a little bit so that the memory check happens.
        time.sleep(4)
315

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    def test_logprob_start_len(self):
        logprob_start_len = 4
        new_tokens = 4
        prompts = [
            "I have a very good idea on",
            "Today is a sunndy day and",
        ]

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": prompts,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": new_tokens,
                },
                "return_logprob": True,
                "top_logprobs_num": 5,
                "logprob_start_len": logprob_start_len,
            },
        )
        response_json = response.json()
        print(json.dumps(response_json, indent=2))

        for res in response_json:
            self.assertEqual(
                res["meta_info"]["prompt_tokens"],
                logprob_start_len + len(res["meta_info"]["input_token_logprobs"]),
            )

            self.assertEqual(res["meta_info"]["completion_tokens"], new_tokens)
            self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), new_tokens)

    def test_logprob_match(self):
        """Test the output logprobs are close to the input logprobs if we run a prefill again."""

        def run_generate(
            prompt, return_logprob=False, max_new_tokens=512, logprob_start_len=-1
        ):

            if isinstance(prompt, str):
                prompt_kwargs = {"text": prompt}
            else:
                prompt_kwargs = {"input_ids": prompt}

            response = requests.post(
                self.base_url + "/generate",
                json={
                    **prompt_kwargs,
                    "sampling_params": {
                        "temperature": 1.0,
                        "max_new_tokens": max_new_tokens,
                        "ignore_eos": True,
                    },
                    "return_logprob": return_logprob,
                    "return_text_in_logprobs": True,
                    "logprob_start_len": logprob_start_len,
                },
            )
            return response.json()

        prompt = "I have a very good idea on how to"

        gen = run_generate(prompt, return_logprob=True, logprob_start_len=0)
        output_logprobs = np.array(
            [x[0] for x in gen["meta_info"]["output_token_logprobs"]]
        )
        num_prompts_tokens = gen["meta_info"]["prompt_tokens"]

        input_tokens = [x[1] for x in gen["meta_info"]["input_token_logprobs"]]
        output_tokens = [x[1] for x in gen["meta_info"]["output_token_logprobs"]]

        new_prompt = input_tokens + output_tokens
        score = run_generate(
            new_prompt, return_logprob=True, logprob_start_len=0, max_new_tokens=0
        )
        output_logprobs_score = np.array(
            [
                x[0]
                for x in score["meta_info"]["input_token_logprobs"][num_prompts_tokens:]
            ]
        )

        print(f"{output_logprobs[-10:]=}")
        print(f"{output_logprobs_score[-10:]=}")

        diff = np.abs(output_logprobs - output_logprobs_score)
        max_diff = np.max(diff)
        self.assertLess(max_diff, 0.25)

    def test_logprob_mixed(self):
        args = []
        temperature = 0
        # input_len, output_len, temperature, logprob_start_len, return_logprob, top_logprobs_num
        # Llama 2 context length seems to be only 2k, so we can only test small length.
        for input_len in [200, 500, 1000, 2000]:
            for output_len in [4, 8]:
                for logprob_start_len in [0, 100, 300, 800, 1998]:
                    for return_logprob in [True, False]:
                        for top_logprobs_num in [0, 5]:

                            if logprob_start_len >= input_len:
                                continue

                            args.append(
                                (
                                    input_len,
                                    output_len,
                                    temperature,
                                    logprob_start_len,
                                    return_logprob,
                                    top_logprobs_num,
                                )
                            )

        random.shuffle(args)

        func = partial(run_logprob_check, self)
        with ThreadPoolExecutor(8) as executor:
            list(executor.map(func, args))

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    def run_decode(self, sampling_params):
        return_logprob = True
        top_logprobs_num = 5
        return_text = True
        n = 1

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": "Human: Write a travel blog post to Hawaii.\n\nAssistant:",
                "sampling_params": {
                    "max_new_tokens": 48,
                    "n": n,
                    "temperature": 0.7,
                    **sampling_params,
                },
                "return_logprob": return_logprob,
                "top_logprobs_num": top_logprobs_num,
                "return_text_in_logprobs": return_text,
                "logprob_start_len": 0,
            },
        )
        self.assertEqual(response.status_code, 200)
        print(json.dumps(response.json()))
        print("=" * 100)

    def test_penalty_mixed(self):
        args = [
            {},
            {},
            {},
            {"frequency_penalty": 2},
            {"presence_penalty": 1},
            {"min_new_tokens": 16},
            {"frequency_penalty": 0.2},
            {"presence_penalty": 0.4},
            {"min_new_tokens": 8},
            {"frequency_penalty": 0.4, "presence_penalty": 0.8},
            {"frequency_penalty": 0.4, "min_new_tokens": 12},
            {"presence_penalty": 0.8, "min_new_tokens": 12},
            {"presence_penalty": -0.3, "frequency_penalty": 1.3, "min_new_tokens": 32},
            {"presence_penalty": 0.3, "frequency_penalty": -1.3, "min_new_tokens": 32},
        ]
        random.shuffle(args * 5)
        with ThreadPoolExecutor(8) as executor:
            list(executor.map(self.run_decode, args))

484

485
class TestEAGLERetract(TestEAGLEServer):
486
487
    @classmethod
    def setUpClass(cls):
488
489
        # These config helps find a leak.
        os.environ["SGLANG_CI_SMALL_KV_SIZE"] = "4500"
490
491
492
493
494
495
496
497
498
499
500
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
501
                5,
502
                "--speculative-eagle-topk",
503
                8,
504
                "--speculative-num-draft-tokens",
505
                64,
506
                "--mem-fraction-static",
507
                0.7,
508
                "--chunked-prefill-size",
509
                128,
510
                "--max-running-requests",
511
                64,
512
513
514
515
            ],
        )


516
517
518
519
520
521
522
523
524
525
526
527
528
529
class TestEAGLEServerTriton(TestEAGLEServer):
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
530
                5,
531
                "--speculative-eagle-topk",
532
                8,
533
                "--speculative-num-draft-tokens",
534
                64,
535
                "--mem-fraction-static",
536
                0.7,
537
538
                "--attention-backend",
                "triton",
539
540
                "--max-running-requests",
                8,
541
542
543
544
            ],
        )


545
546
if __name__ == "__main__":
    unittest.main()