sampling_params.md 4.24 KB
Newer Older
Ying Sheng's avatar
Ying Sheng committed
1
# Sampling Parameters in SGLang Runtime
2
3
4
5
6
This doc describes the sampling parameters of the SGLang Runtime.

The `/generate` endpoint accepts the following arguments in the JSON format.

```python
7
@dataclass
8
class GenerateReqInput:
Ying Sheng's avatar
Ying Sheng committed
9
    # The input prompt. It can be a single prompt or a batch of prompts.
10
    text: Optional[Union[List[str], str]] = None
Ying Sheng's avatar
Ying Sheng committed
11
    # The token ids for text; one can either specify text or input_ids.
12
    input_ids: Optional[Union[List[List[int]], List[int]]] = None
Ying Sheng's avatar
Ying Sheng committed
13
14
    # The image input. It can be a file name, a url, or base64 encoded string.
    # See also python/sglang/srt/utils.py:load_image.
15
    image_data: Optional[Union[List[str], str]] = None
Ying Sheng's avatar
Ying Sheng committed
16
    # The sampling_params.
17
    sampling_params: Union[List[Dict], Dict] = None
Ying Sheng's avatar
Ying Sheng committed
18
    # The request id.
19
    rid: Optional[Union[List[str], str]] = None
Ying Sheng's avatar
Ying Sheng committed
20
    # Whether to return logprobs.
21
    return_logprob: Optional[Union[List[bool], bool]] = None
Ying Sheng's avatar
Ying Sheng committed
22
    # The start location of the prompt for return_logprob.
23
    logprob_start_len: Optional[Union[List[int], int]] = None
Ying Sheng's avatar
Ying Sheng committed
24
    # The number of top logprobs to return.
Liangsheng Yin's avatar
Liangsheng Yin committed
25
    top_logprobs_num: Optional[Union[List[int], int]] = None
Ying Sheng's avatar
Ying Sheng committed
26
    # Whether to detokenize tokens in logprobs.
Liangsheng Yin's avatar
Liangsheng Yin committed
27
    return_text_in_logprobs: bool = False
Ying Sheng's avatar
Ying Sheng committed
28
    # Whether to stream output.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    stream: bool = False
```

The `sampling_params` follows this format

```python
class SamplingParams:
    def __init__(
        self,
        max_new_tokens: int = 16,
        stop: Optional[Union[str, List[str]]] = None,
        temperature: float = 1.0,
        top_p: float = 1.0,
        top_k: int = -1,
        frequency_penalty: float = 0.0,
        presence_penalty: float = 0.0,
        ignore_eos: bool = False,
        skip_special_tokens: bool = True,
        dtype: Optional[str] = None,
        regex: Optional[str] = None,
    ) -> None:
```

Ying Sheng's avatar
Ying Sheng committed
52
53
54
55
- `max_new_tokens`, `stop`, `temperature`, `top_p`, `top_k` are common sampling parameters.
- `ignore_eos` means ignoring the EOS token and continue decoding, which is helpful for benchmarking purposes.
- `regex` constrains the output to follow a given regular expression.

56
57
58
## Examples

### Normal
Ying Sheng's avatar
Ying Sheng committed
59
Launch a server
60
```
Ying Sheng's avatar
Ying Sheng committed
61
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
62
63
```

Ying Sheng's avatar
Ying Sheng committed
64
Send a request
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
```python
import requests

response = requests.post(
    "http://localhost:30000/generate",
    json={
        "text": "The capital of France is",
        "sampling_params": {
            "temperature": 0,
            "max_new_tokens": 32,
        },
    },
)
print(response.json())
```

### Streaming
Ying Sheng's avatar
Ying Sheng committed
82
Send a request and stream the output
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
```python
import requests, json

response = requests.post(
    "http://localhost:30000/generate",
    json={
        "text": "The capital of France is",
        "sampling_params": {
            "temperature": 0,
            "max_new_tokens": 256,
        },
        "stream": True,
    },
    stream=True,
)

prev = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
100
101
102
103
104
105
for chunk in response.iter_lines(decode_unicode=False):
    chunk = chunk.decode("utf-8")
    if chunk and chunk.startswith("data:"):
        if chunk == "data: [DONE]":
            break
        data = json.loads(chunk[5:].strip("\n"))
106
107
108
109
110
        output = data["text"].strip()
        print(output[prev:], end="", flush=True)
        prev = len(output)
print("")
```
111
112
113

### Multi modal

Ying Sheng's avatar
Ying Sheng committed
114
115
116
117
118
119
120
121
122
123
Launch a server
```
python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.6-vicuna-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000
```

Download an image
```
curl -o example_image.png -L https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true
```

Ying Sheng's avatar
Ying Sheng committed
124
Send a request
Ying Sheng's avatar
Ying Sheng committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
```python
import requests

response = requests.post(
    "http://localhost:30000/generate",
    json={
        "text": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <image>\nDescribe this picture ASSISTANT:",
        "image_data": "example_image.png",
        "sampling_params": {
            "temperature": 0,
            "max_new_tokens": 32,
        },
    },
)
print(response.json())
```

The `image_data` can be a file name, a URL, or a base64 encoded string. See also `python/sglang/srt/utils.py:load_image`.
Ying Sheng's avatar
Ying Sheng committed
143
Streaming is supported in a similar manner as [above](#streaming).