openai_api_vision.ipynb 7.56 KB
Newer Older
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
7
    "# OpenAI APIs - Vision\n",
8
9
10
11
12
    "\n",
    "SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
    "A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/guides/vision).\n",
    "This tutorial covers the vision APIs for vision language models.\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
13
    "SGLang supports various vision language models such as Llama 3.2, LLaVA-OneVision, Qwen2.5-VL, Gemma3 and [more](../supported_models/multimodal_language_models.md).\n",
simveit's avatar
simveit committed
14
15
    "\n",
    "As an alternative to the OpenAI API, you can also use the [SGLang offline engine](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/offline_batch_inference_vlm.py)."
16
17
18
19
20
21
22
23
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch A Server\n",
    "\n",
24
    "Launch the server in your terminal and wait for it to initialize."
25
26
27
28
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
29
   "execution_count": null,
30
   "metadata": {},
Chayenne's avatar
Chayenne committed
31
   "outputs": [],
32
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
33
    "from sglang.test.doc_patch import launch_server_cmd\n",
34
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
35
    "\n",
simveit's avatar
simveit committed
36
    "vision_process, port = launch_server_cmd(\n",
Chayenne's avatar
Chayenne committed
37
    "    \"\"\"\n",
38
    "python3 -m sglang.launch_server --model-path Qwen/Qwen2.5-VL-7B-Instruct\n",
39
40
41
    "\"\"\"\n",
    ")\n",
    "\n",
42
    "wait_for_server(f\"http://localhost:{port}\")"
43
44
45
46
47
48
49
50
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using cURL\n",
    "\n",
Chayenne's avatar
Chayenne committed
51
    "Once the server is up, you can send test requests using curl or requests."
52
53
54
55
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
56
   "execution_count": null,
57
   "metadata": {},
Chayenne's avatar
Chayenne committed
58
   "outputs": [],
59
60
61
   "source": [
    "import subprocess\n",
    "\n",
62
63
    "curl_command = f\"\"\"\n",
    "curl -s http://localhost:{port}/v1/chat/completions \\\\\n",
64
    "  -H \"Content-Type: application/json\" \\\\\n",
65
    "  -d '{{\n",
66
    "    \"model\": \"Qwen/Qwen2.5-VL-7B-Instruct\",\n",
67
    "    \"messages\": [\n",
68
    "      {{\n",
69
70
    "        \"role\": \"user\",\n",
    "        \"content\": [\n",
71
    "          {{\n",
72
73
    "            \"type\": \"text\",\n",
    "            \"text\": \"What’s in this image?\"\n",
74
75
    "          }},\n",
    "          {{\n",
76
    "            \"type\": \"image_url\",\n",
77
    "            \"image_url\": {{\n",
78
    "              \"url\": \"https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true\"\n",
79
80
    "            }}\n",
    "          }}\n",
81
    "        ]\n",
82
    "      }}\n",
83
84
    "    ],\n",
    "    \"max_tokens\": 300\n",
85
    "  }}'\n",
86
87
88
    "\"\"\"\n",
    "\n",
    "response = subprocess.check_output(curl_command, shell=True).decode()\n",
89
90
91
92
    "print_highlight(response)\n",
    "\n",
    "\n",
    "response = subprocess.check_output(curl_command, shell=True).decode()\n",
93
94
95
    "print_highlight(response)"
   ]
  },
Chayenne's avatar
Chayenne committed
96
97
98
99
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
100
    "## Using Python Requests"
Chayenne's avatar
Chayenne committed
101
102
103
104
105
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
106
   "metadata": {},
Chayenne's avatar
Chayenne committed
107
108
109
110
   "outputs": [],
   "source": [
    "import requests\n",
    "\n",
111
    "url = f\"http://localhost:{port}/v1/chat/completions\"\n",
Chayenne's avatar
Chayenne committed
112
113
    "\n",
    "data = {\n",
114
    "    \"model\": \"Qwen/Qwen2.5-VL-7B-Instruct\",\n",
Chayenne's avatar
Chayenne committed
115
116
117
118
    "    \"messages\": [\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": [\n",
Chayenne's avatar
Chayenne committed
119
    "                {\"type\": \"text\", \"text\": \"What’s in this image?\"},\n",
Chayenne's avatar
Chayenne committed
120
121
122
123
    "                {\n",
    "                    \"type\": \"image_url\",\n",
    "                    \"image_url\": {\n",
    "                        \"url\": \"https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true\"\n",
Chayenne's avatar
Chayenne committed
124
125
126
    "                    },\n",
    "                },\n",
    "            ],\n",
Chayenne's avatar
Chayenne committed
127
128
    "        }\n",
    "    ],\n",
Chayenne's avatar
Chayenne committed
129
    "    \"max_tokens\": 300,\n",
Chayenne's avatar
Chayenne committed
130
131
132
133
134
135
    "}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.text)"
   ]
  },
136
137
138
139
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
140
    "## Using OpenAI Python Client"
141
142
143
144
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
145
   "execution_count": null,
146
   "metadata": {},
Chayenne's avatar
Chayenne committed
147
   "outputs": [],
148
149
150
   "source": [
    "from openai import OpenAI\n",
    "\n",
151
    "client = OpenAI(base_url=f\"http://localhost:{port}/v1\", api_key=\"None\")\n",
152
153
    "\n",
    "response = client.chat.completions.create(\n",
154
    "    model=\"Qwen/Qwen2.5-VL-7B-Instruct\",\n",
155
156
157
158
159
160
161
162
163
164
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": [\n",
    "                {\n",
    "                    \"type\": \"text\",\n",
    "                    \"text\": \"What is in this image?\",\n",
    "                },\n",
    "                {\n",
    "                    \"type\": \"image_url\",\n",
Chayenne's avatar
Chayenne committed
165
166
167
    "                    \"image_url\": {\n",
    "                        \"url\": \"https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true\"\n",
    "                    },\n",
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    "                },\n",
    "            ],\n",
    "        }\n",
    "    ],\n",
    "    max_tokens=300,\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Multiple-Image Inputs\n",
    "\n",
    "The server also supports multiple images and interleaved text and images if the model supports it."
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
189
   "execution_count": null,
190
   "metadata": {},
Chayenne's avatar
Chayenne committed
191
   "outputs": [],
192
193
194
   "source": [
    "from openai import OpenAI\n",
    "\n",
195
    "client = OpenAI(base_url=f\"http://localhost:{port}/v1\", api_key=\"None\")\n",
196
197
    "\n",
    "response = client.chat.completions.create(\n",
198
    "    model=\"Qwen/Qwen2.5-VL-7B-Instruct\",\n",
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": [\n",
    "                {\n",
    "                    \"type\": \"image_url\",\n",
    "                    \"image_url\": {\n",
    "                        \"url\": \"https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true\",\n",
    "                    },\n",
    "                },\n",
    "                {\n",
    "                    \"type\": \"image_url\",\n",
    "                    \"image_url\": {\n",
    "                        \"url\": \"https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png\",\n",
    "                    },\n",
    "                },\n",
    "                {\n",
    "                    \"type\": \"text\",\n",
    "                    \"text\": \"I have two very different images. They are not related at all. \"\n",
Chayenne's avatar
Chayenne committed
218
    "                    \"Please describe the first image in one sentence, and then describe the second image in another sentence.\",\n",
219
220
221
222
223
224
225
226
227
228
229
230
    "                },\n",
    "            ],\n",
    "        }\n",
    "    ],\n",
    "    temperature=0,\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "code",
231
232
   "execution_count": null,
   "metadata": {},
233
234
   "outputs": [],
   "source": [
simveit's avatar
simveit committed
235
    "terminate_process(vision_process)"
236
237
238
239
   ]
  }
 ],
 "metadata": {
Chayenne's avatar
Chayenne committed
240
241
242
243
244
245
246
247
248
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
249
   "pygments_lexer": "ipython3"
250
251
252
253
254
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}