openai_api_completions.ipynb 12.4 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
7
    "# OpenAI APIs - Completions\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
9
10
    "SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
    "A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/api-reference).\n",
11
    "\n",
12
    "This tutorial covers the following popular APIs:\n",
Chayenne's avatar
Chayenne committed
13
14
15
    "\n",
    "- `chat/completions`\n",
    "- `completions`\n",
16
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
17
    "Check out other tutorials to learn about [vision APIs](openai_api_vision.ipynb) for vision-language models and [embedding APIs](openai_api_embeddings.ipynb) for embedding models."
Chayenne's avatar
Chayenne committed
18
19
20
21
22
23
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
24
    "## Launch A Server\n",
Chayenne's avatar
Chayenne committed
25
    "\n",
26
    "Launch the server in your terminal and wait for it to initialize."
Chayenne's avatar
Chayenne committed
27
28
29
30
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
31
   "execution_count": null,
32
   "metadata": {},
Chayenne's avatar
Chayenne committed
33
   "outputs": [],
Chayenne's avatar
Chayenne committed
34
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
35
    "from sglang.test.doc_patch import launch_server_cmd\n",
36
37
38
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
    "\n",
    "server_process, port = launch_server_cmd(\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
39
    "    \"python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct --host 0.0.0.0\"\n",
Chayenne's avatar
Chayenne committed
40
41
    ")\n",
    "\n",
42
43
    "wait_for_server(f\"http://localhost:{port}\")\n",
    "print(f\"Server started on http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
44
45
   ]
  },
46
47
48
49
50
51
52
53
54
55
56
57
58
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Chat Completions\n",
    "\n",
    "### Usage\n",
    "\n",
    "The server fully implements the OpenAI API.\n",
    "It will automatically apply the chat template specified in the Hugging Face tokenizer, if one is available.\n",
    "You can also specify a custom chat template with `--chat-template` when launching the server."
   ]
  },
Chayenne's avatar
Chayenne committed
59
60
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
61
   "execution_count": null,
62
   "metadata": {},
Chayenne's avatar
Chayenne committed
63
   "outputs": [],
Chayenne's avatar
Chayenne committed
64
65
66
   "source": [
    "import openai\n",
    "\n",
67
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
Chayenne's avatar
Chayenne committed
68
69
    "\n",
    "response = client.chat.completions.create(\n",
70
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
71
72
73
74
75
76
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
77
78
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
79
80
   ]
  },
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Model Thinking/Reasoning Support\n",
    "\n",
    "Some models support internal reasoning or thinking processes that can be exposed in the API response. SGLang provides unified support for various reasoning models through the `chat_template_kwargs` parameter and compatible reasoning parsers.\n",
    "\n",
    "#### Supported Models and Configuration\n",
    "\n",
    "| Model Family | Chat Template Parameter | Reasoning Parser | Notes |\n",
    "|--------------|------------------------|------------------|--------|\n",
    "| DeepSeek-R1 (R1, R1-0528, R1-Distill) | `enable_thinking` | `--reasoning-parser deepseek-r1` | Standard reasoning models |\n",
    "| DeepSeek-V3.1 | `thinking` | `--reasoning-parser deepseek-v3` | Hybrid model (thinking/non-thinking modes) |\n",
    "| Qwen3 (standard) | `enable_thinking` | `--reasoning-parser qwen3` | Hybrid model (thinking/non-thinking modes) |\n",
    "| Qwen3-Thinking | N/A (always enabled) | `--reasoning-parser qwen3-thinking` | Always generates reasoning |\n",
    "| Kimi | N/A (always enabled) | `--reasoning-parser kimi` | Kimi thinking models |\n",
    "| Gpt-Oss | N/A (always enabled) | `--reasoning-parser gpt-oss` | Gpt-Oss thinking models |\n",
    "\n",
    "#### Basic Usage\n",
    "\n",
    "To enable reasoning output, you need to:\n",
    "1. Launch the server with the appropriate reasoning parser\n",
    "2. Set the model-specific parameter in `chat_template_kwargs`\n",
    "3. Optionally use `separate_reasoning: False` to not get reasoning content separately (default to `True`)\n",
    "\n",
    "**Note for Qwen3-Thinking models:** These models always generate thinking content and do not support the `enable_thinking` parameter. Use `--reasoning-parser qwen3-thinking` or `--reasoning-parser qwen3` to parse the thinking content.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Example: Qwen3 Models\n",
    "\n",
    "```python\n",
    "# Launch server:\n",
    "# python3 -m sglang.launch_server --model-path QwQ/Qwen3-32B-250415 --reasoning-parser qwen3\n",
    "\n",
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(\n",
    "    api_key=\"EMPTY\",\n",
    "    base_url=f\"http://127.0.0.1:{port}/v1\",\n",
    ")\n",
    "\n",
    "model = \"QwQ/Qwen3-32B-250415\"\n",
    "messages = [{\"role\": \"user\", \"content\": \"9.11 and 9.8, which is greater?\"}]\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=model,\n",
    "    messages=messages,\n",
    "    extra_body={\n",
    "        \"chat_template_kwargs\": {\"enable_thinking\": True},\n",
    "        \"separate_reasoning\": True\n",
    "    }\n",
    ")\n",
    "\n",
    "print(\"Reasoning:\", response.choices[0].message.reasoning_content)\n",
    "print(\"Answer:\", response.choices[0].message.content)\n",
    "```\n",
    "\n",
    "**Output:**\n",
    "```\n",
    "Reasoning: Okay, so I need to figure out which number is greater between 9.11 and 9.8...\n",
    "Answer: 9.8 is greater than 9.11.\n",
    "```\n",
    "\n",
    "**Note:** Setting `\"enable_thinking\": False` (or omitting it) will result in `reasoning_content` being `None`. Qwen3-Thinking models always generate reasoning content and don't support the `enable_thinking` parameter.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Example: DeepSeek-V3 Models\n",
    "\n",
    "DeepSeek-V3 models support thinking mode through the `thinking` parameter:\n",
    "\n",
    "```python\n",
    "# Launch server:\n",
    "# python3 -m sglang.launch_server --model-path deepseek-ai/DeepSeek-V3 --reasoning-parser deepseek-v3\n",
    "\n",
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(\n",
    "    api_key=\"EMPTY\",\n",
    "    base_url=f\"http://127.0.0.1:{port}/v1\",\n",
    ")\n",
    "\n",
    "model = \"deepseek-ai/DeepSeek-V3\"\n",
    "messages = [{\"role\": \"user\", \"content\": \"What is 2^8?\"}]\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=model,\n",
    "    messages=messages,\n",
    "    extra_body={\n",
    "        \"chat_template_kwargs\": {\"thinking\": True},\n",
    "        \"separate_reasoning\": True\n",
    "    }\n",
    ")\n",
    "\n",
    "print(\"Reasoning:\", response.choices[0].message.reasoning_content)\n",
    "print(\"Answer:\", response.choices[0].message.content)\n",
    "```\n",
    "\n",
    "**Output:**\n",
    "```\n",
    "Reasoning: <think>I need to calculate 2^8. Let me work through this step by step:\n",
    "2^1 = 2\n",
    "2^2 = 4\n",
    "2^3 = 8\n",
    "2^4 = 16\n",
    "2^5 = 32\n",
    "2^6 = 64\n",
    "2^7 = 128\n",
    "2^8 = 256</think>\n",
    "Answer: 2^8 equals 256.\n",
    "```\n",
    "\n",
    "**Note:** DeepSeek-V3 models use the `thinking` parameter (not `enable_thinking`) to control reasoning output.\n"
   ]
  },
Chayenne's avatar
Chayenne committed
204
205
206
207
208
209
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
210
    "The chat completions API accepts OpenAI Chat Completions API's parameters. Refer to [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat/create) for more details.\n",
Chayenne's avatar
Chayenne committed
211
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    "SGLang extends the standard API with the `extra_body` parameter, allowing for additional customization. One key option within `extra_body` is `chat_template_kwargs`, which can be used to pass arguments to the chat template processor."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = client.chat.completions.create(\n",
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"system\",\n",
    "            \"content\": \"You are a knowledgeable historian who provides concise responses.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"Tell me about ancient Rome\"},\n",
    "        {\n",
    "            \"role\": \"assistant\",\n",
    "            \"content\": \"Ancient Rome was a civilization centered in Italy.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"What were their major achievements?\"},\n",
    "    ],\n",
    "    temperature=0.3,  # Lower temperature for more focused responses\n",
    "    max_tokens=128,  # Reasonable length for a concise response\n",
    "    top_p=0.95,  # Slightly higher for better fluency\n",
    "    presence_penalty=0.2,  # Mild penalty to avoid repetition\n",
    "    frequency_penalty=0.2,  # Mild penalty for more natural language\n",
    "    n=1,  # Single response is usually more stable\n",
    "    seed=42,  # Keep for reproducibility\n",
    ")\n",
243
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Streaming mode is also supported."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stream = client.chat.completions.create(\n",
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
    "    messages=[{\"role\": \"user\", \"content\": \"Say this is a test\"}],\n",
    "    stream=True,\n",
    ")\n",
    "for chunk in stream:\n",
    "    if chunk.choices[0].delta.content is not None:\n",
    "        print(chunk.choices[0].delta.content, end=\"\")"
   ]
  },
Chayenne's avatar
Chayenne committed
270
271
272
273
274
275
276
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Completions\n",
    "\n",
    "### Usage\n",
277
    "Completions API is similar to Chat Completions API, but without the `messages` parameter or chat templates."
Chayenne's avatar
Chayenne committed
278
279
280
281
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
282
   "execution_count": null,
283
   "metadata": {},
Chayenne's avatar
Chayenne committed
284
   "outputs": [],
Chayenne's avatar
Chayenne committed
285
286
   "source": [
    "response = client.completions.create(\n",
287
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
288
289
290
291
292
293
    "    prompt=\"List 3 countries and their capitals.\",\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    "    n=1,\n",
    "    stop=None,\n",
    ")\n",
294
295
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
296
297
298
299
300
301
302
303
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
304
    "The completions API accepts OpenAI Completions API's parameters.  Refer to [OpenAI Completions API](https://platform.openai.com/docs/api-reference/completions/create) for more details.\n",
Chayenne's avatar
Chayenne committed
305
306
307
308
309
310
    "\n",
    "Here is an example of a detailed completions request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
311
   "execution_count": null,
312
   "metadata": {},
Chayenne's avatar
Chayenne committed
313
   "outputs": [],
Chayenne's avatar
Chayenne committed
314
315
   "source": [
    "response = client.completions.create(\n",
316
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
317
318
319
320
321
322
323
324
325
326
327
    "    prompt=\"Write a short story about a space explorer.\",\n",
    "    temperature=0.7,  # Moderate temperature for creative writing\n",
    "    max_tokens=150,  # Longer response for a story\n",
    "    top_p=0.9,  # Balanced diversity in word choice\n",
    "    stop=[\"\\n\\n\", \"THE END\"],  # Multiple stop sequences\n",
    "    presence_penalty=0.3,  # Encourage novel elements\n",
    "    frequency_penalty=0.3,  # Reduce repetitive phrases\n",
    "    n=1,  # Generate one completion\n",
    "    seed=123,  # For reproducible results\n",
    ")\n",
    "\n",
328
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
329
330
   ]
  },
Lianmin Zheng's avatar
Lianmin Zheng committed
331
332
333
334
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
335
    "## Structured Outputs (JSON, Regex, EBNF)\n",
336
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
337
    "For OpenAI compatible structured outputs API, refer to [Structured Outputs](../advanced_features/structured_outputs.ipynb) for more details.\n"
338
339
   ]
  },
Chayenne's avatar
Chayenne committed
340
341
  {
   "cell_type": "code",
342
343
   "execution_count": null,
   "metadata": {},
Lianmin Zheng's avatar
Lianmin Zheng committed
344
   "outputs": [],
Chayenne's avatar
Chayenne committed
345
   "source": [
346
    "terminate_process(server_process)"
Chayenne's avatar
Chayenne committed
347
348
349
350
   ]
  }
 ],
 "metadata": {
Chayenne's avatar
Chayenne committed
351
352
353
354
355
356
357
358
359
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
360
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
361
362
363
364
365
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}