openai_api_completions.ipynb 11.1 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
7
    "# OpenAI APIs - Completions\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
9
10
    "SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
    "A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/api-reference).\n",
11
    "\n",
12
    "This tutorial covers the following popular APIs:\n",
Chayenne's avatar
Chayenne committed
13
14
15
    "\n",
    "- `chat/completions`\n",
    "- `completions`\n",
16
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
17
    "Check out other tutorials to learn about [vision APIs](openai_api_vision.ipynb) for vision-language models and [embedding APIs](openai_api_embeddings.ipynb) for embedding models."
Chayenne's avatar
Chayenne committed
18
19
20
21
22
23
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
24
    "## Launch A Server\n",
Chayenne's avatar
Chayenne committed
25
    "\n",
26
    "Launch the server in your terminal and wait for it to initialize."
Chayenne's avatar
Chayenne committed
27
28
29
30
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
31
   "execution_count": null,
32
   "metadata": {},
Chayenne's avatar
Chayenne committed
33
   "outputs": [],
Chayenne's avatar
Chayenne committed
34
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
35
    "from sglang.test.doc_patch import launch_server_cmd\n",
36
37
38
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
    "\n",
    "server_process, port = launch_server_cmd(\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
39
    "    \"python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct --host 0.0.0.0\"\n",
Chayenne's avatar
Chayenne committed
40
41
    ")\n",
    "\n",
42
43
    "wait_for_server(f\"http://localhost:{port}\")\n",
    "print(f\"Server started on http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
44
45
   ]
  },
46
47
48
49
50
51
52
53
54
55
56
57
58
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Chat Completions\n",
    "\n",
    "### Usage\n",
    "\n",
    "The server fully implements the OpenAI API.\n",
    "It will automatically apply the chat template specified in the Hugging Face tokenizer, if one is available.\n",
    "You can also specify a custom chat template with `--chat-template` when launching the server."
   ]
  },
Chayenne's avatar
Chayenne committed
59
60
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
61
   "execution_count": null,
62
   "metadata": {},
Chayenne's avatar
Chayenne committed
63
   "outputs": [],
Chayenne's avatar
Chayenne committed
64
65
66
   "source": [
    "import openai\n",
    "\n",
67
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
Chayenne's avatar
Chayenne committed
68
69
    "\n",
    "response = client.chat.completions.create(\n",
70
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
71
72
73
74
75
76
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
77
78
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
79
80
81
82
83
84
85
86
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
87
    "The chat completions API accepts OpenAI Chat Completions API's parameters. Refer to [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat/create) for more details.\n",
Chayenne's avatar
Chayenne committed
88
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    "SGLang extends the standard API with the `extra_body` parameter, allowing for additional customization. One key option within `extra_body` is `chat_template_kwargs`, which can be used to pass arguments to the chat template processor."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = client.chat.completions.create(\n",
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"system\",\n",
    "            \"content\": \"You are a knowledgeable historian who provides concise responses.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"Tell me about ancient Rome\"},\n",
    "        {\n",
    "            \"role\": \"assistant\",\n",
    "            \"content\": \"Ancient Rome was a civilization centered in Italy.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"What were their major achievements?\"},\n",
    "    ],\n",
    "    temperature=0.3,  # Lower temperature for more focused responses\n",
    "    max_tokens=128,  # Reasonable length for a concise response\n",
    "    top_p=0.95,  # Slightly higher for better fluency\n",
    "    presence_penalty=0.2,  # Mild penalty to avoid repetition\n",
    "    frequency_penalty=0.2,  # Mild penalty for more natural language\n",
    "    n=1,  # Single response is usually more stable\n",
    "    seed=42,  # Keep for reproducibility\n",
    ")\n",
120
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Streaming mode is also supported."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stream = client.chat.completions.create(\n",
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
    "    messages=[{\"role\": \"user\", \"content\": \"Say this is a test\"}],\n",
    "    stream=True,\n",
    ")\n",
    "for chunk in stream:\n",
    "    if chunk.choices[0].delta.content is not None:\n",
    "        print(chunk.choices[0].delta.content, end=\"\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Enabling Model Thinking/Reasoning\n",
152
    "\n",
153
154
155
156
    "You can use `chat_template_kwargs` to enable or disable the model's internal thinking or reasoning process output. Set `\"enable_thinking\": True` within `chat_template_kwargs` to include the reasoning steps in the response. This requires launching the server with a compatible reasoning parser.\n",
    "\n",
    "**Reasoning Parser Options:**\n",
    "- `--reasoning-parser deepseek-r1`: For DeepSeek-R1 family models (R1, R1-0528, R1-Distill)\n",
157
158
    "- `--reasoning-parser qwen3`: For both standard Qwen3 models that support `enable_thinking` parameter and Qwen3-Thinking models\n",
    "- `--reasoning-parser qwen3-thinking`: For Qwen3-Thinking models, force reasoning version of qwen3 parser\n",
159
    "- `--reasoning-parser kimi`: For Kimi thinking models\n",
160
161
162
163
    "\n",
    "Here's an example demonstrating how to enable thinking and retrieve the reasoning content separately (using `separate_reasoning: True`):\n",
    "\n",
    "```python\n",
164
    "# For Qwen3 models with enable_thinking support:\n",
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    "# python3 -m sglang.launch_server --model-path QwQ/Qwen3-32B-250415 --reasoning-parser qwen3 ...\n",
    "\n",
    "from openai import OpenAI\n",
    "\n",
    "# Modify OpenAI's API key and API base to use SGLang's API server.\n",
    "openai_api_key = \"EMPTY\"\n",
    "openai_api_base = f\"http://127.0.0.1:{port}/v1\" # Use the correct port\n",
    "\n",
    "client = OpenAI(\n",
    "    api_key=openai_api_key,\n",
    "    base_url=openai_api_base,\n",
    ")\n",
    "\n",
    "model = \"QwQ/Qwen3-32B-250415\" # Use the model loaded by the server\n",
    "messages = [{\"role\": \"user\", \"content\": \"9.11 and 9.8, which is greater?\"}]\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=model,\n",
    "    messages=messages,\n",
    "    extra_body={\n",
185
    "        \"chat_template_kwargs\": {\"enable_thinking\": True},\n",
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    "        \"separate_reasoning\": True\n",
    "    }\n",
    ")\n",
    "\n",
    "print(\"response.choices[0].message.reasoning_content: \\n\", response.choices[0].message.reasoning_content)\n",
    "print(\"response.choices[0].message.content: \\n\", response.choices[0].message.content)\n",
    "```\n",
    "\n",
    "**Example Output:**\n",
    "\n",
    "```\n",
    "response.choices[0].message.reasoning_content: \n",
    " Okay, so I need to figure out which number is greater between 9.11 and 9.8. Hmm, let me think. Both numbers start with 9, right? So the whole number part is the same. That means I need to look at the decimal parts to determine which one is bigger.\n",
    "...\n",
    "Therefore, after checking multiple methods—aligning decimals, subtracting, converting to fractions, and using a real-world analogy—it's clear that 9.8 is greater than 9.11.\n",
    "\n",
    "response.choices[0].message.content: \n",
    " To determine which number is greater between **9.11** and **9.8**, follow these steps:\n",
    "...\n",
    "**Answer**:  \n",
    "9.8 is greater than 9.11.\n",
    "```\n",
    "\n",
    "Setting `\"enable_thinking\": False` (or omitting it) will result in `reasoning_content` being `None`.\n",
    "\n",
211
    "**Note for Qwen3-Thinking models:** These models always generate thinking content and do not support the `enable_thinking` parameter. Use `--reasoning-parser qwen3-thinking` or `--reasoning-parser qwen3` to parse the thinking content.\n",
212
    "\n",
213
    "Here is an example of a detailed chat completion request using standard OpenAI parameters:"
Chayenne's avatar
Chayenne committed
214
215
216
217
218
219
220
221
222
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Completions\n",
    "\n",
    "### Usage\n",
223
    "Completions API is similar to Chat Completions API, but without the `messages` parameter or chat templates."
Chayenne's avatar
Chayenne committed
224
225
226
227
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
228
   "execution_count": null,
229
   "metadata": {},
Chayenne's avatar
Chayenne committed
230
   "outputs": [],
Chayenne's avatar
Chayenne committed
231
232
   "source": [
    "response = client.completions.create(\n",
233
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
234
235
236
237
238
239
    "    prompt=\"List 3 countries and their capitals.\",\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    "    n=1,\n",
    "    stop=None,\n",
    ")\n",
240
241
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
242
243
244
245
246
247
248
249
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
250
    "The completions API accepts OpenAI Completions API's parameters.  Refer to [OpenAI Completions API](https://platform.openai.com/docs/api-reference/completions/create) for more details.\n",
Chayenne's avatar
Chayenne committed
251
252
253
254
255
256
    "\n",
    "Here is an example of a detailed completions request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
257
   "execution_count": null,
258
   "metadata": {},
Chayenne's avatar
Chayenne committed
259
   "outputs": [],
Chayenne's avatar
Chayenne committed
260
261
   "source": [
    "response = client.completions.create(\n",
262
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
263
264
265
266
267
268
269
270
271
272
273
    "    prompt=\"Write a short story about a space explorer.\",\n",
    "    temperature=0.7,  # Moderate temperature for creative writing\n",
    "    max_tokens=150,  # Longer response for a story\n",
    "    top_p=0.9,  # Balanced diversity in word choice\n",
    "    stop=[\"\\n\\n\", \"THE END\"],  # Multiple stop sequences\n",
    "    presence_penalty=0.3,  # Encourage novel elements\n",
    "    frequency_penalty=0.3,  # Reduce repetitive phrases\n",
    "    n=1,  # Generate one completion\n",
    "    seed=123,  # For reproducible results\n",
    ")\n",
    "\n",
274
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
275
276
   ]
  },
Lianmin Zheng's avatar
Lianmin Zheng committed
277
278
279
280
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
281
    "## Structured Outputs (JSON, Regex, EBNF)\n",
282
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
283
    "For OpenAI compatible structured outputs API, refer to [Structured Outputs](../advanced_features/structured_outputs.ipynb) for more details.\n"
284
285
   ]
  },
Chayenne's avatar
Chayenne committed
286
287
  {
   "cell_type": "code",
288
289
   "execution_count": null,
   "metadata": {},
Lianmin Zheng's avatar
Lianmin Zheng committed
290
   "outputs": [],
Chayenne's avatar
Chayenne committed
291
   "source": [
292
    "terminate_process(server_process)"
Chayenne's avatar
Chayenne committed
293
294
295
296
   ]
  }
 ],
 "metadata": {
Chayenne's avatar
Chayenne committed
297
298
299
300
301
302
303
304
305
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
306
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
307
308
309
310
311
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}