"...research_projects/multi_subject_dreambooth/README.md" did not exist on "3b747de8452beed08df0397522920220f62fd7ff"
README.md 7.72 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# SGLang

SGLang is a structured generation language designed for large language models (LLMs).
It makes your interaction with LLMs faster and more controllable by co-designing the frontend language and the runtime system.

The core features of SGLang include:
- **A Flexible Front-End Language**: This allows for easy programming of LLM applications with multiple chained generation calls, advanced prompting techniques, control flow, multiple modalities, parallelism, and external interaction.
- **A High-Performance Runtime with RadixAttention**: This feature significantly accelerates the execution of complex LLM programs by automatic KV cache reuse across multiple calls. It also supports other common techniques like continuous batching and tensor parallelism.

## Contents
- [Install](#install)
- [Quick Start](#quick-start)
- [Frontend: Structured Generation Langauge (SGLang)](#frontend-structured-generation-langauge-sglang)
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

Lianmin Zheng's avatar
Lianmin Zheng committed
21
22
23
24
### Method 1: With pip
```
pip install "sglang[all]"
```
Lianmin Zheng's avatar
Lianmin Zheng committed
25

Lianmin Zheng's avatar
Lianmin Zheng committed
26
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
27
28
29
30
31
32
33
34
35
36
37
38
```
git clone git@github.com:sgl-project/sglang.git
cd sglang

pip install --upgrade pip
pip install -e "python[all]"
```

## Quick Start
The example below shows how to use sglang to answer a mulit-turn question.

### Using OpenAI Models
Lianmin Zheng's avatar
Lianmin Zheng committed
39
40
41
42
43
44
Set the OpenAI API Key
```
export OPENAI_API_KEY=sk-xxxxxx
```

Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
```python
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

set_default_backend(OpenAI("gpt-3.5-turbo"))

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
```

### Using Local Models
First, launch a server with
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
```

Then, connect to the server and answer a multi-turn question.

```python
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

set_default_backend(RuntimeEndpoint("http://localhost:30000"))

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
```

### More Examples

You can find more examples at [examples/quick_start](examples/quick_start).

## Frontend: Structured Generation Langauge (SGLang)

Lianmin Zheng's avatar
Lianmin Zheng committed
103
104
105
106
107
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
108
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
109
110
111
112
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
The system will manage the state, chat template, and parallelism for you.

Lianmin Zheng's avatar
Lianmin Zheng committed
113
### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
114
115
116
117
118
119
120
121
122
123
124
125
```python
@sgl.function
def control_flow(s, question):
    s += "To answer this question: " + question + ", "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "web browser"]) + ". "

    # You can use if or nested function calls
    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
    elif s["tool"] == "web browser":
        s += "The website url is" + sgl.gen("url")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
126
127

### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

    forks = s.fork(2)  # Launch parallel prompts
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
145
146
147
148

### Multi Modality
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
149
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
150
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
151
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
152
153
```

Lianmin Zheng's avatar
Lianmin Zheng committed
154
155
### Constrained Decoding
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
156
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
157
158
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
159
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
160
161
162
163
164
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
165

Lianmin Zheng's avatar
Lianmin Zheng committed
166
### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
181
182

### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
183
184
185
186
187
188
189
190
191
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run(
    question="What is the capital of France?",
    temperature=0.1)
Lianmin Zheng's avatar
Lianmin Zheng committed
192

Lianmin Zheng's avatar
Lianmin Zheng committed
193
194
195
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
196
197
198
199

## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is designed to work best with the SGLang frontend.
However, it can also be used as a standalone API server.
Lianmin Zheng's avatar
Lianmin Zheng committed
200
In this case, the [RadixAttention](https://arxiv.org/abs/2312.07104) can still greatly accelerate many use cases.
Lianmin Zheng's avatar
Lianmin Zheng committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

### Usage
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
```

Send a request
```
curl http://localhost:30000/v1/completions \
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "Say this is a test",
    "max_tokens": 16,
    "temperature": 0
  }'
```

### Additional Arguments
- Add `--tp 2` to enable tensor parallelism.
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --tp 2
```

### Supported Models
- Llama
- Mistral
- Mixtral
- LLaVA
Lianmin Zheng's avatar
Lianmin Zheng committed
230
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --port 30000`
Lianmin Zheng's avatar
Lianmin Zheng committed
231
232
233

## Benchmark And Performance

Lianmin Zheng's avatar
Lianmin Zheng committed
234
235
236
237
238
239
- Llama-7B on NVIDIA A10G, FP16, Tensor Parallelism=1
![llama_7b](assets/llama_7b.jpg)

- Mixtral-8x7B on NVIDIA A10G, FP16, Tensor Parallelism=8
![mixtral_8x7b](assets/mixtral_8x7b.jpg)

Lianmin Zheng's avatar
Lianmin Zheng committed
240
Learn more [here](docs/benchmark_results.md).
Lianmin Zheng's avatar
Lianmin Zheng committed
241

Lianmin Zheng's avatar
Lianmin Zheng committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
## Roadmap
- [ ] Function call
- [ ] Quantization
- [ ] S-LoRA
- [ ] More models

## Citation And Acknowledgment
```
@misc{zheng2023efficiently,
      title={Efficiently Programming Large Language Models using SGLang},
      author={Lianmin Zheng and Liangsheng Yin and Zhiqiang Xie and Jeff Huang and Chuyue Sun and Cody Hao Yu and Shiyi Cao and Christos Kozyrakis and Ion Stoica and Joseph E. Gonzalez and Clark Barrett and Ying Sheng},
      year={2023},
      eprint={2312.07104},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
```

260
We learned from the design and reused some code of the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), [LMQL](https://github.com/eth-sri/lmql).