"sgl-kernel/vscode:/vscode.git/clone" did not exist on "3b3b3baf9f08a8f2e6180c9f9146b6137ad8032c"
install.md 7.45 KB
Newer Older
1
# Install SGLang
2

3
You can install SGLang using any of the methods below.
4

5
6
7
For running DeepSeek V3/R1, refer to [DeepSeek V3 Support](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3). It is recommended to use the latest version and deploy it with [Docker](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#using-docker-recommended) to avoid environment-related issues.

It is recommended to use uv to install the dependencies for faster installation:
8

9
## Method 1: With pip or uv
10
11

```bash
12
pip install --upgrade pip
13
pip install uv
14
uv pip install "sglang[all]>=0.4.6.post5"
15
16
```

17
**Quick Fixes to Common Problems**
18

Wenxuan Tan's avatar
Wenxuan Tan committed
19
- SGLang currently uses torch 2.6, so you need to install flashinfer for torch 2.6. If you want to install flashinfer separately, please refer to [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html). Please note that the FlashInfer pypi package is called `flashinfer-python` instead of `flashinfer`.
20

21
- If you encounter `OSError: CUDA_HOME environment variable is not set`. Please set it to your CUDA install root with either of the following solutions:
22

23
24
  1. Use `export CUDA_HOME=/usr/local/cuda-<your-cuda-version>` to set the `CUDA_HOME` environment variable.
  2. Install FlashInfer first following [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html), then install SGLang as described above.
simveit's avatar
simveit committed
25

26
## Method 2: From source
27
28

```bash
29
# Use the last release branch
30
git clone -b v0.4.6.post5 https://github.com/sgl-project/sglang.git
31
cd sglang
32

33
pip install --upgrade pip
34
pip install -e "python[all]"
35
```
36

Wenxuan Tan's avatar
Wenxuan Tan committed
37
Note: SGLang currently uses torch 2.6, so you need to install flashinfer for torch 2.6. If you want to install flashinfer separately, please refer to [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html).
Yineng Zhang's avatar
Yineng Zhang committed
38

39
If you want to develop SGLang, it is recommended to use docker. Please refer to [setup docker container](https://github.com/sgl-project/sglang/blob/main/docs/developer/development_guide_using_docker.md#setup-docker-container) for guidance. The docker image is `lmsysorg/sglang:dev`.
Lianmin Zheng's avatar
Lianmin Zheng committed
40

41
Note: For AMD ROCm system with Instinct/MI GPUs, do following instead:
42

43
```bash
44
# Use the last release branch
45
git clone -b v0.4.6.post5 https://github.com/sgl-project/sglang.git
46
47
48
cd sglang

pip install --upgrade pip
49
50
51
cd sgl-kernel
python setup_rocm.py install
cd ..
52
53
54
pip install -e "python[all_hip]"
```

55
## Method 3: Using docker
56

57
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](https://github.com/sgl-project/sglang/tree/main/docker).
58
Replace `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
59
60

```bash
61
docker run --gpus all \
62
    --shm-size 32g \
63
    -p 30000:30000 \
64
    -v ~/.cache/huggingface:/root/.cache/huggingface \
65
66
    --env "HF_TOKEN=<secret>" \
    --ipc=host \
67
    lmsysorg/sglang:latest \
68
    python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
69
70
```

71
Note: For AMD ROCm system with Instinct/MI GPUs, it is recommended to use `docker/Dockerfile.rocm` to build images, example and usage as below:
72
73

```bash
74
docker build --build-arg SGL_BRANCH=v0.4.6.post5 -t v0.4.6.post5-rocm630 -f Dockerfile.rocm .
75
76
77
78
79
80
81
82

alias drun='docker run -it --rm --network=host --device=/dev/kfd --device=/dev/dri --ipc=host \
    --shm-size 16G --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
    -v $HOME/dockerx:/dockerx -v /data:/data'

drun -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --env "HF_TOKEN=<secret>" \
83
    v0.4.6.post5-rocm630 \
84
85
86
    python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000

# Till flashinfer backend available, --attention-backend triton --sampling-backend pytorch are set by default
87
drun v0.4.6.post5-rocm630 python3 -m sglang.bench_one_batch --batch-size 32 --input 1024 --output 128 --model amd/Meta-Llama-3.1-8B-Instruct-FP8-KV --tp 8 --quantization fp8
88
89
```

90
## Method 4: Using docker compose
91
92
93

<details>
<summary>More</summary>
94

95
> This method is recommended if you plan to serve it as a service.
Lianmin Zheng's avatar
Lianmin Zheng committed
96
> A better approach is to use the [k8s-sglang-service.yaml](https://github.com/sgl-project/sglang/blob/main/docker/k8s-sglang-service.yaml).
97

Lianmin Zheng's avatar
Lianmin Zheng committed
98
1. Copy the [compose.yml](https://github.com/sgl-project/sglang/blob/main/docker/compose.yaml) to your local machine
99
2. Execute the command `docker compose up -d` in your terminal.
100
</details>
101

102
103
104
105
106
107
## Method 5: Using Kubernetes

<details>
<summary>More</summary>

1. Option 1: For single node serving (typically when the model size fits into GPUs on one node)
108

109
110
111
112
   Execute command `kubectl apply -f docker/k8s-sglang-service.yaml`, to create k8s deployment and service, with llama-31-8b as example.

2. Option 2: For multi-node serving (usually when a large model requires more than one GPU node, such as `DeepSeek-R1`)

113
   Modify the LLM model path and arguments as necessary, then execute command `kubectl apply -f docker/k8s-sglang-distributed-sts.yaml`, to create two nodes k8s statefulset and serving service.
114

115
</details>
116
117

## Method 6: Run on Kubernetes or Clouds with SkyPilot
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

<details>
<summary>More</summary>

To deploy on Kubernetes or 12+ clouds, you can use [SkyPilot](https://github.com/skypilot-org/skypilot).

1. Install SkyPilot and set up Kubernetes cluster or cloud access: see [SkyPilot's documentation](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html).
2. Deploy on your own infra with a single command and get the HTTP API endpoint:
<details>
<summary>SkyPilot YAML: <code>sglang.yaml</code></summary>

```yaml
# sglang.yaml
envs:
  HF_TOKEN: null

resources:
  image_id: docker:lmsysorg/sglang:latest
  accelerators: A100
  ports: 30000

run: |
  conda deactivate
  python3 -m sglang.launch_server \
142
    --model-path meta-llama/Llama-3.1-8B-Instruct \
143
144
145
    --host 0.0.0.0 \
    --port 30000
```
146

147
148
149
150
151
152
153
154
155
</details>

```bash
# Deploy on any cloud or Kubernetes cluster. Use --cloud <cloud> to select a specific cloud provider.
HF_TOKEN=<secret> sky launch -c sglang --env HF_TOKEN sglang.yaml

# Get the HTTP API endpoint
sky status --endpoint 30000 sglang
```
156

157
158
159
3. To further scale up your deployment with autoscaling and failure recovery, check out the [SkyServe + SGLang guide](https://github.com/skypilot-org/skypilot/tree/master/llm/sglang#serving-llama-2-with-sglang-for-more-traffic-using-skyserve).
</details>

160
## Common Notes
161

Lianmin Zheng's avatar
Lianmin Zheng committed
162
- [FlashInfer](https://github.com/flashinfer-ai/flashinfer) is the default attention kernel backend. It only supports sm75 and above. If you encounter any FlashInfer-related issues on sm75+ devices (e.g., T4, A10, A100, L4, L40S, H100), please switch to other kernels by adding `--attention-backend triton --sampling-backend pytorch` and open an issue on GitHub.
Lianmin Zheng's avatar
Lianmin Zheng committed
163
- If you only need to use OpenAI models with the frontend language, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Yineng Zhang's avatar
Yineng Zhang committed
164
- The language frontend operates independently of the backend runtime. You can install the frontend locally without needing a GPU, while the backend can be set up on a GPU-enabled machine. To install the frontend, run `pip install sglang`, and for the backend, use `pip install sglang[srt]`. `srt` is the abbreviation of SGLang runtime.
165
- To reinstall flashinfer locally, use the following command: `pip install "flashinfer-python==0.2.5" -i https://flashinfer.ai/whl/cu124/torch2.6 --force-reinstall --no-deps` and then delete the cache with `rm -rf ~/.cache/flashinfer`.