openai_api_vision.ipynb 7.67 KB
Newer Older
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
7
    "# OpenAI APIs - Vision\n",
8
9
10
11
12
    "\n",
    "SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
    "A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/guides/vision).\n",
    "This tutorial covers the vision APIs for vision language models.\n",
    "\n",
13
    "SGLang supports various vision language models such as Llama 3.2, LLaVA-OneVision, Qwen2.5-VL, Gemma3 and [more](https://docs.sglang.ai/supported_models/multimodal_language_models).\n",
simveit's avatar
simveit committed
14
15
    "\n",
    "As an alternative to the OpenAI API, you can also use the [SGLang offline engine](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/offline_batch_inference_vlm.py)."
16
17
18
19
20
21
22
23
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch A Server\n",
    "\n",
24
    "Launch the server in your terminal and wait for it to initialize."
25
26
27
28
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
29
   "execution_count": null,
30
   "metadata": {},
Chayenne's avatar
Chayenne committed
31
   "outputs": [],
32
   "source": [
33
34
35
36
37
38
39
40
    "from sglang.test.test_utils import is_in_ci\n",
    "\n",
    "if is_in_ci():\n",
    "    from patch import launch_server_cmd\n",
    "else:\n",
    "    from sglang.utils import launch_server_cmd\n",
    "\n",
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
41
    "\n",
simveit's avatar
simveit committed
42
    "vision_process, port = launch_server_cmd(\n",
Chayenne's avatar
Chayenne committed
43
    "    \"\"\"\n",
44
    "python3 -m sglang.launch_server --model-path Qwen/Qwen2.5-VL-7B-Instruct\n",
45
46
47
    "\"\"\"\n",
    ")\n",
    "\n",
48
    "wait_for_server(f\"http://localhost:{port}\")"
49
50
51
52
53
54
55
56
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using cURL\n",
    "\n",
Chayenne's avatar
Chayenne committed
57
    "Once the server is up, you can send test requests using curl or requests."
58
59
60
61
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
62
   "execution_count": null,
63
   "metadata": {},
Chayenne's avatar
Chayenne committed
64
   "outputs": [],
65
66
67
   "source": [
    "import subprocess\n",
    "\n",
68
69
70
    "curl_command = f\"\"\"\n",
    "curl -s http://localhost:{port}/v1/chat/completions \\\\\n",
    "  -d '{{\n",
71
    "    \"model\": \"Qwen/Qwen2.5-VL-7B-Instruct\",\n",
72
    "    \"messages\": [\n",
73
    "      {{\n",
74
75
    "        \"role\": \"user\",\n",
    "        \"content\": [\n",
76
    "          {{\n",
77
78
    "            \"type\": \"text\",\n",
    "            \"text\": \"What’s in this image?\"\n",
79
80
    "          }},\n",
    "          {{\n",
81
    "            \"type\": \"image_url\",\n",
82
    "            \"image_url\": {{\n",
83
    "              \"url\": \"https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true\"\n",
84
85
    "            }}\n",
    "          }}\n",
86
    "        ]\n",
87
    "      }}\n",
88
89
    "    ],\n",
    "    \"max_tokens\": 300\n",
90
    "  }}'\n",
91
92
93
    "\"\"\"\n",
    "\n",
    "response = subprocess.check_output(curl_command, shell=True).decode()\n",
94
95
96
97
    "print_highlight(response)\n",
    "\n",
    "\n",
    "response = subprocess.check_output(curl_command, shell=True).decode()\n",
98
99
100
    "print_highlight(response)"
   ]
  },
Chayenne's avatar
Chayenne committed
101
102
103
104
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
105
    "## Using Python Requests"
Chayenne's avatar
Chayenne committed
106
107
108
109
110
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
111
   "metadata": {},
Chayenne's avatar
Chayenne committed
112
113
114
115
   "outputs": [],
   "source": [
    "import requests\n",
    "\n",
116
    "url = f\"http://localhost:{port}/v1/chat/completions\"\n",
Chayenne's avatar
Chayenne committed
117
118
    "\n",
    "data = {\n",
119
    "    \"model\": \"Qwen/Qwen2.5-VL-7B-Instruct\",\n",
Chayenne's avatar
Chayenne committed
120
121
122
123
    "    \"messages\": [\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": [\n",
Chayenne's avatar
Chayenne committed
124
    "                {\"type\": \"text\", \"text\": \"What’s in this image?\"},\n",
Chayenne's avatar
Chayenne committed
125
126
127
128
    "                {\n",
    "                    \"type\": \"image_url\",\n",
    "                    \"image_url\": {\n",
    "                        \"url\": \"https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true\"\n",
Chayenne's avatar
Chayenne committed
129
130
131
    "                    },\n",
    "                },\n",
    "            ],\n",
Chayenne's avatar
Chayenne committed
132
133
    "        }\n",
    "    ],\n",
Chayenne's avatar
Chayenne committed
134
    "    \"max_tokens\": 300,\n",
Chayenne's avatar
Chayenne committed
135
136
137
138
139
140
    "}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.text)"
   ]
  },
141
142
143
144
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
145
    "## Using OpenAI Python Client"
146
147
148
149
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
150
   "execution_count": null,
151
   "metadata": {},
Chayenne's avatar
Chayenne committed
152
   "outputs": [],
153
154
155
   "source": [
    "from openai import OpenAI\n",
    "\n",
156
    "client = OpenAI(base_url=f\"http://localhost:{port}/v1\", api_key=\"None\")\n",
157
158
    "\n",
    "response = client.chat.completions.create(\n",
159
    "    model=\"Qwen/Qwen2.5-VL-7B-Instruct\",\n",
160
161
162
163
164
165
166
167
168
169
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": [\n",
    "                {\n",
    "                    \"type\": \"text\",\n",
    "                    \"text\": \"What is in this image?\",\n",
    "                },\n",
    "                {\n",
    "                    \"type\": \"image_url\",\n",
Chayenne's avatar
Chayenne committed
170
171
172
    "                    \"image_url\": {\n",
    "                        \"url\": \"https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true\"\n",
    "                    },\n",
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    "                },\n",
    "            ],\n",
    "        }\n",
    "    ],\n",
    "    max_tokens=300,\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Multiple-Image Inputs\n",
    "\n",
    "The server also supports multiple images and interleaved text and images if the model supports it."
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
194
   "execution_count": null,
195
   "metadata": {},
Chayenne's avatar
Chayenne committed
196
   "outputs": [],
197
198
199
   "source": [
    "from openai import OpenAI\n",
    "\n",
200
    "client = OpenAI(base_url=f\"http://localhost:{port}/v1\", api_key=\"None\")\n",
201
202
    "\n",
    "response = client.chat.completions.create(\n",
203
    "    model=\"Qwen/Qwen2.5-VL-7B-Instruct\",\n",
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": [\n",
    "                {\n",
    "                    \"type\": \"image_url\",\n",
    "                    \"image_url\": {\n",
    "                        \"url\": \"https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true\",\n",
    "                    },\n",
    "                },\n",
    "                {\n",
    "                    \"type\": \"image_url\",\n",
    "                    \"image_url\": {\n",
    "                        \"url\": \"https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png\",\n",
    "                    },\n",
    "                },\n",
    "                {\n",
    "                    \"type\": \"text\",\n",
    "                    \"text\": \"I have two very different images. They are not related at all. \"\n",
Chayenne's avatar
Chayenne committed
223
    "                    \"Please describe the first image in one sentence, and then describe the second image in another sentence.\",\n",
224
225
226
227
228
229
230
231
232
233
234
235
    "                },\n",
    "            ],\n",
    "        }\n",
    "    ],\n",
    "    temperature=0,\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "code",
236
237
   "execution_count": null,
   "metadata": {},
238
239
   "outputs": [],
   "source": [
simveit's avatar
simveit committed
240
    "terminate_process(vision_process)"
241
242
243
244
   ]
  }
 ],
 "metadata": {
Chayenne's avatar
Chayenne committed
245
246
247
248
249
250
251
252
253
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
254
   "pygments_lexer": "ipython3"
255
256
257
258
259
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}