test_fp8_kernel.py 3.91 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import unittest

import torch

from sglang.srt.layers.quantization.fp8_kernel import (
    per_token_group_quant_fp8,
    w8a8_block_fp8_matmul,
)


class TestFP8Base(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.M = 256
        # test non-aligned
        cls.N = 1024 + 64
        cls.K = 512
        cls.group_size = 128
        cls.quant_type = torch.float8_e4m3fn
lukec's avatar
lukec committed
20
        cls.output_type = torch.bfloat16
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

    @staticmethod
    def _make_A(M, K, group_size, out_dtype):
        quant_A = torch.rand(
            M, K // group_size, group_size, dtype=torch.float32, device="cuda"
        )
        # -1 ~ 1
        quant_A = quant_A * 2 - 1
        # scaling abs max to fmax
        finfo = torch.finfo(out_dtype)
        fmax = finfo.max
        scaling = fmax / quant_A.abs().amax(-1, keepdim=True)
        quant_A *= scaling
        quant_A = quant_A.to(out_dtype).to(torch.float32)

        # create scale and A
        scale = torch.rand(M, K // group_size, dtype=torch.float32, device="cuda")
        scale /= fmax
        A = quant_A * scale[..., None]

        A = A.reshape(M, K)
        quant_A = quant_A.reshape(M, K).to(out_dtype)
        return A, quant_A, scale

    @staticmethod
    def _make_B(K, N, group_size, out_dtype):
        def _aligned_size(a, b):
            return (a + b - 1) // b * b

        K_aligned = _aligned_size(K, group_size)
        N_aligned = _aligned_size(N, group_size)

        quant_B = torch.rand(
            K_aligned // group_size,
            group_size,
            N_aligned // group_size,
            group_size,
            dtype=torch.float32,
            device="cuda",
        )
        quant_B = quant_B * 2 - 1

        # scaling abs max to fmax
        finfo = torch.finfo(out_dtype)
        fmax = finfo.max
        scaling = fmax / quant_B.abs().amax((1, 3), keepdim=True)
        quant_B *= scaling
        quant_B = quant_B.to(out_dtype).to(torch.float32)

        scale = torch.rand(
            K_aligned // group_size,
            1,
            N_aligned // group_size,
            1,
            dtype=torch.float32,
            device="cuda",
        )
        scale /= fmax

        B = quant_B * scale

        B = B.reshape(K_aligned, N_aligned)[:K, :N]
        quant_B = quant_B.reshape(K_aligned, N_aligned).to(out_dtype)[:K, :N]
        scale = scale.reshape(K_aligned // group_size, N_aligned // group_size)
        return B, quant_B, scale


class TestPerTokenGroupQuantFP8(TestFP8Base):
    def test_per_token_group_quant_fp8(self):
        if torch.cuda.get_device_capability()[0] < 9:
            return
        A, A_quant_gt, scale_gt = self._make_A(
            M=self.M, K=self.K, group_size=self.group_size, out_dtype=self.quant_type
        )
        A_quant, scale = per_token_group_quant_fp8(
            x=A, group_size=self.group_size, dtype=self.quant_type
        )
        torch.testing.assert_close(scale, scale_gt)
        diff = (A_quant.to(torch.float16) - A_quant_gt.to(torch.float16)).abs()
        diff_count = (diff > 1e-5).count_nonzero()
        assert diff_count / diff.numel() < 1e-4


class TestW8A8BlockFP8Matmul(TestFP8Base):
    def test_w8a8_block_fp8_matmul(self):
        if torch.cuda.get_device_capability()[0] < 9:
            return
        A, A_quant_gt, A_scale_gt = self._make_A(
            M=self.M, K=self.K, group_size=self.group_size, out_dtype=self.quant_type
        )
        B, B_quant_gt, B_scale_gt = self._make_B(
            K=self.K, N=self.N, group_size=self.group_size, out_dtype=self.quant_type
        )
        C_gt = A.to(self.output_type) @ B.to(self.output_type)
        C = w8a8_block_fp8_matmul(
            A=A_quant_gt,
            B=B_quant_gt.T.contiguous(),
            As=A_scale_gt,
            Bs=B_scale_gt.T.contiguous(),
            block_size=[128, 128],
            output_dtype=self.output_type,
        )
        torch.testing.assert_close(C, C_gt, atol=0.5, rtol=1e-4)


if __name__ == "__main__":
    unittest.main()