test_fp8_kernel.py 3.91 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import unittest

import torch

from sglang.srt.layers.quantization.fp8_kernel import (
    per_token_group_quant_fp8,
    w8a8_block_fp8_matmul,
)


class TestFP8Base(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.M = 256
        # test non-aligned
        cls.N = 1024 + 64
        cls.K = 512
        cls.group_size = 128
        cls.quant_type = torch.float8_e4m3fn
        cls.output_type = torch.float16

    @staticmethod
    def _make_A(M, K, group_size, out_dtype):
        quant_A = torch.rand(
            M, K // group_size, group_size, dtype=torch.float32, device="cuda"
        )
        # -1 ~ 1
        quant_A = quant_A * 2 - 1
        # scaling abs max to fmax
        finfo = torch.finfo(out_dtype)
        fmax = finfo.max
        scaling = fmax / quant_A.abs().amax(-1, keepdim=True)
        quant_A *= scaling
        quant_A = quant_A.to(out_dtype).to(torch.float32)

        # create scale and A
        scale = torch.rand(M, K // group_size, dtype=torch.float32, device="cuda")
        scale /= fmax
        A = quant_A * scale[..., None]

        A = A.reshape(M, K)
        quant_A = quant_A.reshape(M, K).to(out_dtype)
        return A, quant_A, scale

    @staticmethod
    def _make_B(K, N, group_size, out_dtype):
        def _aligned_size(a, b):
            return (a + b - 1) // b * b

        K_aligned = _aligned_size(K, group_size)
        N_aligned = _aligned_size(N, group_size)

        quant_B = torch.rand(
            K_aligned // group_size,
            group_size,
            N_aligned // group_size,
            group_size,
            dtype=torch.float32,
            device="cuda",
        )
        quant_B = quant_B * 2 - 1

        # scaling abs max to fmax
        finfo = torch.finfo(out_dtype)
        fmax = finfo.max
        scaling = fmax / quant_B.abs().amax((1, 3), keepdim=True)
        quant_B *= scaling
        quant_B = quant_B.to(out_dtype).to(torch.float32)

        scale = torch.rand(
            K_aligned // group_size,
            1,
            N_aligned // group_size,
            1,
            dtype=torch.float32,
            device="cuda",
        )
        scale /= fmax

        B = quant_B * scale

        B = B.reshape(K_aligned, N_aligned)[:K, :N]
        quant_B = quant_B.reshape(K_aligned, N_aligned).to(out_dtype)[:K, :N]
        scale = scale.reshape(K_aligned // group_size, N_aligned // group_size)
        return B, quant_B, scale


class TestPerTokenGroupQuantFP8(TestFP8Base):
    def test_per_token_group_quant_fp8(self):
        if torch.cuda.get_device_capability()[0] < 9:
            return
        A, A_quant_gt, scale_gt = self._make_A(
            M=self.M, K=self.K, group_size=self.group_size, out_dtype=self.quant_type
        )
        A_quant, scale = per_token_group_quant_fp8(
            x=A, group_size=self.group_size, dtype=self.quant_type
        )
        torch.testing.assert_close(scale, scale_gt)
        diff = (A_quant.to(torch.float16) - A_quant_gt.to(torch.float16)).abs()
        diff_count = (diff > 1e-5).count_nonzero()
        assert diff_count / diff.numel() < 1e-4


class TestW8A8BlockFP8Matmul(TestFP8Base):
    def test_w8a8_block_fp8_matmul(self):
        if torch.cuda.get_device_capability()[0] < 9:
            return
        A, A_quant_gt, A_scale_gt = self._make_A(
            M=self.M, K=self.K, group_size=self.group_size, out_dtype=self.quant_type
        )
        B, B_quant_gt, B_scale_gt = self._make_B(
            K=self.K, N=self.N, group_size=self.group_size, out_dtype=self.quant_type
        )
        C_gt = A.to(self.output_type) @ B.to(self.output_type)
        C = w8a8_block_fp8_matmul(
            A=A_quant_gt,
            B=B_quant_gt.T.contiguous(),
            As=A_scale_gt,
            Bs=B_scale_gt.T.contiguous(),
            block_size=[128, 128],
            output_dtype=self.output_type,
        )
        torch.testing.assert_close(C, C_gt, atol=0.5, rtol=1e-4)


if __name__ == "__main__":
    unittest.main()