"docs/en/understand_mmcv/config.md" did not exist on "9141d91ddcd1f2f7418712e821c68eb5e8b6cdac"
bench_sglang.py 4.66 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
10
import argparse
import json
import os
import time

import numpy as np
import pandas as pd
import tiktoken
from tqdm import tqdm

Liangsheng Yin's avatar
Liangsheng Yin committed
11
12
13
14
from sglang.test.test_utils import (
    add_common_sglang_args_and_parse,
    select_sglang_backend,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
15
16
17
18
19
20
21
22
23
24
25
26
27

choices = ["A", "B", "C", "D"]

tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")


def format_subject(subject):
    l = subject.split("_")
    s = ""
    for entry in l:
        s += " " + entry
    return s

Liangsheng Yin's avatar
Liangsheng Yin committed
28

Lianmin Zheng's avatar
Lianmin Zheng committed
29
30
31
32
def format_example(df, idx, include_answer=True):
    prompt = df.iloc[idx, 0]
    k = df.shape[1] - 2
    for j in range(k):
Liangsheng Yin's avatar
Liangsheng Yin committed
33
        prompt += "\n{}. {}".format(choices[j], df.iloc[idx, j + 1])
Lianmin Zheng's avatar
Lianmin Zheng committed
34
35
36
37
38
    prompt += "\nAnswer:"
    if include_answer:
        prompt += " {}\n\n".format(df.iloc[idx, k + 1])
    return prompt

Liangsheng Yin's avatar
Liangsheng Yin committed
39

Lianmin Zheng's avatar
Lianmin Zheng committed
40
def gen_prompt(train_df, subject, k=-1):
Liangsheng Yin's avatar
Liangsheng Yin committed
41
42
43
    prompt = "The following are multiple choice questions (with answers) about{}.\n\n".format(
        format_subject(subject)
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
44
45
46
47
48
49
    if k == -1:
        k = train_df.shape[0]
    for i in range(k):
        prompt += format_example(train_df, i)
    return prompt

Liangsheng Yin's avatar
Liangsheng Yin committed
50

51
52
53
54
55
56
57
58
59
60
61
def main(args):
    subjects = sorted(
        [
            f.split("_test.csv")[0]
            for f in os.listdir(os.path.join(args.data_dir, "test"))
            if "_test.csv" in f
        ]
    )

    # Build prompts
    arguments = []
Lianmin Zheng's avatar
Lianmin Zheng committed
62
    labels = []
63
64
65
66
67
68
69
70
71
72
    num_questions = []

    for subject in subjects[: args.nsub]:
        dev_df = pd.read_csv(
            os.path.join(args.data_dir, "dev", subject + "_dev.csv"), header=None
        )[: args.ntrain]
        test_df = pd.read_csv(
            os.path.join(args.data_dir, "test", subject + "_test.csv"), header=None
        )
        num_questions.append(test_df.shape[0])
Lianmin Zheng's avatar
Lianmin Zheng committed
73

74
        k = args.ntrain
Lianmin Zheng's avatar
Lianmin Zheng committed
75
        few_shot_examples = gen_prompt(dev_df, subject, k)
76
77
78
        while len(tokenizer.encode(few_shot_examples)) > 1536:
            k -= 1
            few_shot_examples = gen_prompt(dev_df, subject, k)
Lianmin Zheng's avatar
Lianmin Zheng committed
79

80
81
        for i in range(test_df.shape[0]):
            prompt_end = format_example(test_df, i, include_answer=False)
Lianmin Zheng's avatar
Lianmin Zheng committed
82

Ying Sheng's avatar
Ying Sheng committed
83
84
85
86
87
88
            arguments.append(
                {
                    "examples": few_shot_examples,
                    "question": prompt_end,
                }
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
89

90
91
            label = test_df.iloc[i, test_df.shape[1] - 1]
            labels.append(label)
Lianmin Zheng's avatar
Lianmin Zheng committed
92
93
94
95
96
97

    #####################################
    ######### SGL Program Begin #########
    #####################################

    import sglang as sgl
98
99

    if args.backend.startswith("gpt-"):
Liangsheng Yin's avatar
Liangsheng Yin committed
100

101
102
103
104
        @sgl.function
        def few_shot_mmlu(s, examples, question):
            s += sgl.user(examples + question)
            s += sgl.assistant(sgl.gen("answer"))
Liangsheng Yin's avatar
Liangsheng Yin committed
105

106
    else:
Liangsheng Yin's avatar
Liangsheng Yin committed
107

108
109
110
        @sgl.function
        def few_shot_mmlu(s, examples, question):
            s += examples + question + sgl.gen("answer")
Lianmin Zheng's avatar
Lianmin Zheng committed
111
112
113
114
115
116
117
118

    #####################################
    ########## SGL Program End ##########
    #####################################

    # Select backend
    backend = select_sglang_backend(args)

119
    # Run
Lianmin Zheng's avatar
Lianmin Zheng committed
120
    tic = time.time()
121
    states = few_shot_mmlu.run_batch(
Liangsheng Yin's avatar
Liangsheng Yin committed
122
123
124
125
126
        arguments,
        temperature=0,
        max_new_tokens=1,
        backend=backend,
        num_threads=args.parallel,
127
        progress_bar=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
128
129
130
131
    )
    preds = [
        s["answer"].strip()[0] if len(s["answer"].strip()) > 0 else "" for s in states
    ]
Lianmin Zheng's avatar
Lianmin Zheng committed
132
133
    latency = time.time() - tic

134
    # Compute accuracy
Lianmin Zheng's avatar
Lianmin Zheng committed
135
136
    cors = [pred == label for pred, label in zip(preds, labels)]

137
138
    pt = 0
    for subject, num_qs in zip(subjects[: args.nsub], num_questions):
Ying Sheng's avatar
Ying Sheng committed
139
140
141
        print(
            f"subject: {subject}, #q:{num_qs}, acc: {np.mean(cors[pt: pt + num_qs]):.3f}"
        )
142
143
144
        pt += num_qs
    assert pt == len(cors)
    weighted_acc = np.mean(cors)
Lianmin Zheng's avatar
Lianmin Zheng committed
145

146
147
    # Print results
    print("Total latency: {:.3f}".format(latency))
Lianmin Zheng's avatar
Lianmin Zheng committed
148
149
150
151
152
153
154
155
    print("Average accuracy: {:.3f}".format(weighted_acc))

    # Write results
    with open(args.result_file, "a") as fout:
        value = {
            "task": "mmlu",
            "backend": args.backend,
            "num_gpus": 1,
156
            "latency": round(latency, 3),
Lianmin Zheng's avatar
Lianmin Zheng committed
157
            "accuracy": round(weighted_acc, 3),
158
            "num_requests": len(arguments),
Lianmin Zheng's avatar
Lianmin Zheng committed
159
160
161
            "other": {
                "nsub": args.nsub,
                "parallel": args.parallel,
Liangsheng Yin's avatar
Liangsheng Yin committed
162
            },
Lianmin Zheng's avatar
Lianmin Zheng committed
163
164
165
166
167
168
169
170
171
172
173
174
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--ntrain", "-k", type=int, default=5)
    parser.add_argument("--data_dir", "-d", type=str, default="data")
    parser.add_argument("--save_dir", "-s", type=str, default="results")
    parser.add_argument("--nsub", type=int, default=60)
    args = add_common_sglang_args_and_parse(parser)
    main(args)