bench_sglang.py 4.32 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import argparse
import json
import os
import time

import numpy as np
import pandas as pd
import tiktoken
from tqdm import tqdm
from sglang.test.test_utils import add_common_sglang_args_and_parse, select_sglang_backend


choices = ["A", "B", "C", "D"]

tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")


def format_subject(subject):
    l = subject.split("_")
    s = ""
    for entry in l:
        s += " " + entry
    return s

def format_example(df, idx, include_answer=True):
    prompt = df.iloc[idx, 0]
    k = df.shape[1] - 2
    for j in range(k):
        prompt += "\n{}. {}".format(choices[j], df.iloc[idx, j+1])
    prompt += "\nAnswer:"
    if include_answer:
        prompt += " {}\n\n".format(df.iloc[idx, k + 1])
    return prompt

def gen_prompt(train_df, subject, k=-1):
    prompt = "The following are multiple choice questions (with answers) about{}.\n\n".format(format_subject(subject))
    if k == -1:
        k = train_df.shape[0]
    for i in range(k):
        prompt += format_example(train_df, i)
    return prompt

def evaluate(args, subject, dev_df, test_df):
    prompts = []
    labels = []

    k = args.ntrain
    few_shot_examples = gen_prompt(dev_df, subject, k)
    while len(tokenizer.encode(few_shot_examples)) > 1536:
        k -= 1
        few_shot_examples = gen_prompt(dev_df, subject, k)

    for i in range(test_df.shape[0]):
        prompt_end = format_example(test_df, i, include_answer=False)
        prompts.append(prompt_end)

        label = test_df.iloc[i, test_df.shape[1]-1]
        labels.append(label)

    arguments = [{"question": p} for p in prompts]

    #####################################
    ######### SGL Program Begin #########
    #####################################

    import sglang as sgl
    
    @sgl.function
    def few_shot_mmlu(s, examples, question):
        s += examples + question + sgl.gen("answer")

    #####################################
    ########## SGL Program End ##########
    #####################################

    # Select backend
    backend = select_sglang_backend(args)

    tic = time.time()
    states = few_shot_mmlu.bind(examples=few_shot_examples).run_batch(
        arguments, temperature=0, max_new_tokens=1,
        backend=backend, num_threads=args.parallel)
    preds = [s["answer"].strip()[0] if len(s["answer"].strip()) > 0 else ""
             for s in states]
    latency = time.time() - tic

    cors = [pred == label for pred, label in zip(preds, labels)]
    acc = np.mean(cors)
    cors = np.array(cors)

    print("Average accuracy {:.3f}, latency {:.2f}, #q: {} - {}".format(
        acc, latency, len(prompts), subject))

    return cors, acc, latency


def main(args):
    subjects = sorted([f.split("_test.csv")[0] for f in os.listdir(os.path.join(args.data_dir, "test")) if "_test.csv" in f])

    all_cors = []
    all_latencies = []
    num_requests = 0

    for subject in tqdm(subjects[:args.nsub]):
        dev_df = pd.read_csv(os.path.join(args.data_dir, "dev", subject + "_dev.csv"), header=None)[:args.ntrain]
        test_df = pd.read_csv(os.path.join(args.data_dir, "test", subject + "_test.csv"), header=None)

        cors, acc, latency = evaluate(args, subject, dev_df, test_df)
        all_cors.append(cors)
        all_latencies.append(latency)
        num_requests += len(test_df)

    total_latency = np.sum(all_latencies)
    print("Total latency: {:.3f}".format(total_latency))

    weighted_acc = np.mean(np.concatenate(all_cors))
    print("Average accuracy: {:.3f}".format(weighted_acc))

    # Write results
    with open(args.result_file, "a") as fout:
        value = {
            "task": "mmlu",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(total_latency, 3),
            "accuracy": round(weighted_acc, 3),
            "num_requests": num_requests,
            "other": {
                "nsub": args.nsub,
                "parallel": args.parallel,
            }
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--ntrain", "-k", type=int, default=5)
    parser.add_argument("--data_dir", "-d", type=str, default="data")
    parser.add_argument("--save_dir", "-s", type=str, default="results")
    parser.add_argument("--nsub", type=int, default=60)
    args = add_common_sglang_args_and_parse(parser)
    main(args)