install.md 7.25 KB
Newer Older
1
# Install SGLang
2

3
You can install SGLang using any of the methods below.
4

5
For running DeepSeek V3/R1, refer to [DeepSeek V3 Support](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3). It is recommended to use the [latest version](https://pypi.org/project/sglang/#history) and deploy it with [Docker](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#using-docker-recommended) to avoid environment-related problems.
6

7
## Method 1: With pip
8
9

```bash
10
pip install --upgrade pip
11
pip install "sglang[all]>=0.4.3.post2" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python
12
13
```

14
**Quick Fixes to Installation**
15

16
- SGLang currently uses torch 2.5, so you need to install flashinfer for torch 2.5. If you want to install flashinfer separately, please refer to [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html). Please note that the FlashInfer pypi package is called `flashinfer-python` instead of `flashinfer`.
17

18
- If you encounter `OSError: CUDA_HOME environment variable is not set. Please set it to your CUDA install root`, please try either of the following solutions:
Lianmin Zheng's avatar
Lianmin Zheng committed
19

20
1. Use `export CUDA_HOME=/usr/local/cuda-<your-cuda-version>` to set the `CUDA_HOME` environment variable.
21
2. Install FlashInfer first following [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html), then install SGLang as described above.
simveit's avatar
simveit committed
22

23
- If you encounter `ImportError; cannot import name 'is_valid_list_of_images' from 'transformers.models.llama.image_processing_llama'`, try to use the specified version of `transformers` in [pyproject.toml](https://github.com/sgl-project/sglang/blob/main/python/pyproject.toml). Currently, just running `pip install transformers==4.48.3`.
simveit's avatar
simveit committed
24

25
## Method 2: From source
26
```
27
# Use the last release branch
28
git clone -b v0.4.3.post2 https://github.com/sgl-project/sglang.git
29
cd sglang
30

31
pip install --upgrade pip
32
pip install -e "python[all]" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python
33
```
34

35
Note: SGLang currently uses torch 2.5, so you need to install flashinfer for torch 2.5. If you want to install flashinfer separately, please refer to [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html).
Yineng Zhang's avatar
Yineng Zhang committed
36

37
If you want to develop SGLang, it is recommended to use docker. Please refer to [setup docker container](https://github.com/sgl-project/sglang/blob/main/docs/developer/development_guide_using_docker.md#setup-docker-container) for guidance. The docker image is `lmsysorg/sglang:dev`.
Lianmin Zheng's avatar
Lianmin Zheng committed
38

39
Note: For AMD ROCm system with Instinct/MI GPUs, do following instead:
40
41
42

```
# Use the last release branch
43
git clone -b v0.4.3.post2 https://github.com/sgl-project/sglang.git
44
45
46
cd sglang

pip install --upgrade pip
47
48
49
cd sgl-kernel
python setup_rocm.py install
cd ..
50
51
52
pip install -e "python[all_hip]"
```

53
## Method 3: Using docker
54
55
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](https://github.com/sgl-project/sglang/tree/main/docker).
Replace `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
56
57

```bash
58
docker run --gpus all \
59
    --shm-size 32g \
60
    -p 30000:30000 \
61
    -v ~/.cache/huggingface:/root/.cache/huggingface \
62
63
    --env "HF_TOKEN=<secret>" \
    --ipc=host \
64
    lmsysorg/sglang:latest \
65
    python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
66
67
```

68
Note: For AMD ROCm system with Instinct/MI GPUs, it is recommended to use `docker/Dockerfile.rocm` to build images, example and usage as below:
69
70

```bash
71
docker build --build-arg SGL_BRANCH=v0.4.3.post2 -t v0.4.3.post2-rocm630 -f Dockerfile.rocm .
72
73
74
75
76
77
78
79

alias drun='docker run -it --rm --network=host --device=/dev/kfd --device=/dev/dri --ipc=host \
    --shm-size 16G --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
    -v $HOME/dockerx:/dockerx -v /data:/data'

drun -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --env "HF_TOKEN=<secret>" \
80
    v0.4.3.post2-rocm630 \
81
82
83
    python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000

# Till flashinfer backend available, --attention-backend triton --sampling-backend pytorch are set by default
84
drun v0.4.3.post2-rocm630 python3 -m sglang.bench_one_batch --batch-size 32 --input 1024 --output 128 --model amd/Meta-Llama-3.1-8B-Instruct-FP8-KV --tp 8 --quantization fp8
85
86
```

87
## Method 4: Using docker compose
88
89
90

<details>
<summary>More</summary>
91

92
> This method is recommended if you plan to serve it as a service.
Lianmin Zheng's avatar
Lianmin Zheng committed
93
> A better approach is to use the [k8s-sglang-service.yaml](https://github.com/sgl-project/sglang/blob/main/docker/k8s-sglang-service.yaml).
94

Lianmin Zheng's avatar
Lianmin Zheng committed
95
1. Copy the [compose.yml](https://github.com/sgl-project/sglang/blob/main/docker/compose.yaml) to your local machine
96
2. Execute the command `docker compose up -d` in your terminal.
97
</details>
98

99
## Method 5: Run on Kubernetes or Clouds with SkyPilot
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

<details>
<summary>More</summary>

To deploy on Kubernetes or 12+ clouds, you can use [SkyPilot](https://github.com/skypilot-org/skypilot).

1. Install SkyPilot and set up Kubernetes cluster or cloud access: see [SkyPilot's documentation](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html).
2. Deploy on your own infra with a single command and get the HTTP API endpoint:
<details>
<summary>SkyPilot YAML: <code>sglang.yaml</code></summary>

```yaml
# sglang.yaml
envs:
  HF_TOKEN: null

resources:
  image_id: docker:lmsysorg/sglang:latest
  accelerators: A100
  ports: 30000

run: |
  conda deactivate
  python3 -m sglang.launch_server \
124
    --model-path meta-llama/Llama-3.1-8B-Instruct \
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    --host 0.0.0.0 \
    --port 30000
```
</details>

```bash
# Deploy on any cloud or Kubernetes cluster. Use --cloud <cloud> to select a specific cloud provider.
HF_TOKEN=<secret> sky launch -c sglang --env HF_TOKEN sglang.yaml

# Get the HTTP API endpoint
sky status --endpoint 30000 sglang
```
3. To further scale up your deployment with autoscaling and failure recovery, check out the [SkyServe + SGLang guide](https://github.com/skypilot-org/skypilot/tree/master/llm/sglang#serving-llama-2-with-sglang-for-more-traffic-using-skyserve).
</details>

140
## Common Notes
Lianmin Zheng's avatar
Lianmin Zheng committed
141
- [FlashInfer](https://github.com/flashinfer-ai/flashinfer) is the default attention kernel backend. It only supports sm75 and above. If you encounter any FlashInfer-related issues on sm75+ devices (e.g., T4, A10, A100, L4, L40S, H100), please switch to other kernels by adding `--attention-backend triton --sampling-backend pytorch` and open an issue on GitHub.
Lianmin Zheng's avatar
Lianmin Zheng committed
142
- If you only need to use OpenAI models with the frontend language, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Yineng Zhang's avatar
Yineng Zhang committed
143
- The language frontend operates independently of the backend runtime. You can install the frontend locally without needing a GPU, while the backend can be set up on a GPU-enabled machine. To install the frontend, run `pip install sglang`, and for the backend, use `pip install sglang[srt]`. `srt` is the abbreviation of SGLang runtime.
144
- To reinstall flashinfer locally, use the following command: `pip install "flashinfer-python>=0.2.1.post2" -i https://flashinfer.ai/whl/cu124/torch2.5 --force-reinstall --no-deps` and then delete the cache with `rm -rf ~/.cache/flashinfer`.