bench_multiturn.py 15.6 KB
Newer Older
1
2
3
4
5
6
7
import argparse
import asyncio
import json
import queue
import random
import threading
import time
8
from datetime import datetime
9
10
11
from typing import Optional

import aiohttp
12
import numpy as np
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import requests
from tqdm.asyncio import tqdm

from sglang.bench_serving import (
    RequestFuncOutput,
    get_tokenizer,
    remove_prefix,
    sample_random_requests,
)


def parse_args():
    parser = argparse.ArgumentParser(
        description="Script to benchmark concurrent requests to a server."
    )
    parser.add_argument(
        "--num-clients",
        type=int,
31
        default=256,
32
33
        help="Number of concurrent clients",
    )
34
35
36
37
38
39
    parser.add_argument(
        "--max-parallel",
        type=int,
        default=128,
        help="Maximum number of parallel requests",
    )
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    parser.add_argument(
        "--request-length",
        type=int,
        default=512,
        help="Length of each new request",
    )
    parser.add_argument(
        "--output-length",
        type=int,
        default=64,
        help="Length of each output",
    )
    parser.add_argument(
        "--num-rounds",
        type=int,
        default=5,
        help="Number of rounds per client",
    )
    parser.add_argument(
        "--distribution",
        type=str,
        default="poisson",
        choices=["poisson", "uniform"],
        help="Distribution type for request intervals (poisson or uniform)",
    )
    parser.add_argument(
        "--request-rate",
        type=float,
        default=1.0,
        help="Average number of requests per second",
    )
    parser.add_argument(
        "--host",
        type=str,
        default="localhost",
        help="Server hostname or IP (default: localhost)",
    )
    parser.add_argument(
        "--port",
        type=int,
        default=30000,
        help="Server port (default: 30000)",
    )
    parser.add_argument(
84
        "--model-path",
85
86
87
88
        type=str,
        default="meta-llama/Llama-3.1-8B-Instruct",
        help="model path compatible with Hugging Face Transformers",
    )
89
90
91
92
93
94
    parser.add_argument(
        "--dataset-path",
        type=str,
        default="",
        help="local dataset to sample tokens from",
    )
95
96
97
98
99
100
    parser.add_argument(
        "--log-file",
        type=str,
        default="performance_metrics.jsonl",
        help="File to log performance metrics",
    )
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    parser.add_argument(
        "--disable-auto-run",
        action="store_true",
        help="If set, disable automatically testing with a range of request rates.",
    )

    parser.add_argument(
        "--disable-random-sample",
        action="store_true",
        help="If set, disable random sampling of requests from the ShareGPT dataset.",
    )
    parser.add_argument(
        "--sub-question-input-length",
        type=int,
        default=0,
        help="Length of the sub question input for each request, if set 0 use request_length",
    )
    parser.add_argument(
        "--ready-queue-policy",
        type=str,
        default="random",
        help="Policy for popping requests from the ready queue (random or fifo)",
    )
Zhiqiang Xie's avatar
Zhiqiang Xie committed
124
125
126
127
128
129
    parser.add_argument(
        "--tag",
        type=str,
        default="",
        help="Tag of a certain run in the log file",
    )
130
    parser.add_argument("--seed", type=int, default=1, help="The random seed.")
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    return parser.parse_args()


async def async_request_sglang_generate(
    payload,
    url,
    pbar: Optional[tqdm] = None,
):
    """
    Sends a streaming request to the server. Gathers text token-by-token.
    """
    async with aiohttp.ClientSession() as session:
        headers = {}
        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        output = RequestFuncOutput()

        try:
            async with session.post(url=url, json=payload, headers=headers) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)

                            if data["text"]:
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)

                                most_recent_timestamp = timestamp
                                generated_text = data["text"]

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception as e:
            output.success = False
            output.error = str(e)
            print(f"Request failed: {e}")

    if pbar:
        pbar.update(1)
    return output


def gen_payload(prompt, output_len):
    payload = {
        "text": prompt,
        "sampling_params": {
            "temperature": 0.0,
            "max_new_tokens": output_len,
            "ignore_eos": True,
        },
        "stream": True,
        "lora_path": "",
        "return_logprob": False,
        "logprob_start_len": -1,
    }
    return payload


Zhiqiang Xie's avatar
Zhiqiang Xie committed
211
212
213
def log_to_jsonl_file(data, file_path="performance_metrics.jsonl", tag=""):
    """Append the data with a timestamp and tag to the specified JSONL file."""
    timestamped_data = {"timestamp": datetime.now().isoformat(), "tag": tag, **data}
214
215
216
217
218
219
220
221
222
    try:
        with open(file_path, "a") as file:
            file.write(
                json.dumps(timestamped_data) + "\n"
            )  # Write as a single line in JSONL format
    except IOError as e:
        print(f"Error writing to JSONL file: {e}")


223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
class ReadyQueue:
    """
    Thread-safe queue that can pop requests in different orders based on given policy.
    """

    def __init__(self, init_requests=None, policy="random"):
        self.lock = threading.Lock()
        self.requests = init_requests or []
        self.policy = policy

    def append(self, item):
        with self.lock:
            self.requests.append(item)

    def pop(self):
        with self.lock:
            if not self.requests:
                return None
            if self.policy == "random":
                index = random.randrange(len(self.requests))
                return self.requests.pop(index)
            elif self.policy == "fifo":
                return self.requests.pop(0)
            else:
                # todo, varying thinking time of clients
                raise ValueError(f"{self.policy} not implemented")


class WorkloadGenerator:
    def __init__(self, args):
        # Construct the base URL for requests
        self.url = f"http://{args.host}:{args.port}/generate"

256
        self.tokenizer = get_tokenizer(args.model_path)
257
258
259
260
261
        self.distribution = args.distribution
        self.request_rate = args.request_rate
        self.start_time = None
        self.finished_time = None

262
263
264
        self.sent_requests = 0
        self.completed_requests = 0

265
266
267
        self.candidate_inputs = sample_random_requests(
            input_len=args.request_length,
            output_len=args.output_length,
268
            num_prompts=args.num_clients,
269
270
            range_ratio=1.0,
            tokenizer=self.tokenizer,
271
            dataset_path=args.dataset_path,
272
            random_sample=not args.disable_random_sample,
273
        )
274
        self.candidate_inputs = [i.prompt for i in self.candidate_inputs]
275

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        if args.sub_question_input_length != 0:
            sub_question_input_length = args.sub_question_input_length
        else:
            sub_question_input_length = args.request_length

        self.sub_question_inputs = sample_random_requests(
            input_len=sub_question_input_length,
            output_len=args.output_length,
            num_prompts=args.num_clients * max(args.num_rounds - 1, 1),
            range_ratio=1.0,
            tokenizer=self.tokenizer,
            dataset_path=args.dataset_path,
            random_sample=not args.disable_random_sample,
        )

291
292
293
294
295
296
297
298
        init_requests = [
            (i, gen_payload(self.candidate_inputs[i], args.output_length))
            for i in range(args.num_clients)
        ]
        self.client_records = {
            i: {"round": 0, "history": init_requests[i][1]["text"]}
            for i in range(args.num_clients)
        }
299
300
301
        self.ready_queue = ReadyQueue(
            init_requests=init_requests, policy=args.ready_queue_policy
        )
302
303
304
305
306
307
308
309
310
311
312
        self.candidate_inputs = self.candidate_inputs[args.num_clients :]

        self.response_queue = queue.Queue()
        self.pbar = tqdm(total=args.num_clients * args.num_rounds)
        self.performance_metrics = {"ttft": [], "latency": []}

    async def handle_request(self, item):
        try:
            client_id, payload = item
            response = await async_request_sglang_generate(payload, self.url, self.pbar)
            if self.pbar.n == self.pbar.total:
313
                self.finished_time = time.perf_counter()
314
315
316
317
318
319
320
            self.response_queue.put((client_id, response))
        except Exception as e:
            print(f"Request failed: {e}")

    def request_sender(self):
        async def request_loop():
            while True:
321
322
323
324
325
326
327
328
329
330
331
332
                if self.sent_requests - self.completed_requests < args.max_parallel:
                    new_request = self.ready_queue.pop()
                    if new_request:
                        asyncio.create_task(self.handle_request(new_request))
                        self.sent_requests += 1
                else:
                    await asyncio.sleep(0.05)
                    continue

                if self.pbar.n == self.pbar.total:
                    break

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
                # Calculate Poisson-distributed wait time
                if self.distribution == "poisson":
                    sleep_time = random.expovariate(self.request_rate)
                elif self.distribution == "uniform":
                    avg_interval = (
                        1.0 / self.request_rate if self.request_rate > 0 else 1.0
                    )
                    sleep_time = random.uniform(0, 2 * avg_interval)
                else:
                    raise ValueError("Invalid distribution type")
                await asyncio.sleep(sleep_time)  # Wait before sending the next request

        # Create and run the event loop for asynchronous requests
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        loop.run_until_complete(request_loop())
        loop.close()

    def response_handler(self):
        while True:
            try:
                client_id, response = self.response_queue.get(
                    timeout=10
                )  # Block until response is available
                if not response.success:
                    raise ValueError(f"Request failed with error: {response.error}")
                self.client_records[client_id]["history"] += response.generated_text
                self.client_records[client_id]["round"] += 1
                self.performance_metrics["ttft"].append(response.ttft)
                self.performance_metrics["latency"].append(response.latency)
363
                self.completed_requests += 1
364
365

                if self.client_records[client_id]["round"] < args.num_rounds:
366
                    # append new request to client's history
367
368
                    self.client_records[client_id][
                        "history"
Zhiqiang Xie's avatar
Zhiqiang Xie committed
369
                    ] += self.sub_question_inputs.pop().prompt
370
371
372
373
374
375
376
377
378
379
380
381
                    self.ready_queue.append(
                        (
                            client_id,
                            gen_payload(
                                self.client_records[client_id]["history"],
                                args.output_length,
                            ),
                        )
                    )
            except queue.Empty:
                if self.pbar.n == self.pbar.total:
                    break
382
383
384
            except ValueError as e:
                print(f"Error processing response for client {client_id}: {e}")
                continue
385
386
387
388
389

    def run(self):
        request_thread = threading.Thread(target=self.request_sender, daemon=True)
        response_thread = threading.Thread(target=self.response_handler, daemon=True)

390
        self.start_time = time.perf_counter()
391
392
393
394
395
396
        request_thread.start()
        response_thread.start()

        request_thread.join()
        response_thread.join()
        self.pbar.close()
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

        performance_data = {
            "summary": {
                "total_requests": len(self.performance_metrics["ttft"]),
                "request_rate": self.request_rate,
                "average_ttft": sum(self.performance_metrics["ttft"])
                / len(self.performance_metrics["ttft"]),
                "p90_ttft": sorted(self.performance_metrics["ttft"])[
                    int(0.9 * len(self.performance_metrics["ttft"]))
                ],
                "median_ttft": sorted(self.performance_metrics["ttft"])[
                    len(self.performance_metrics["ttft"]) // 2
                ],
                "average_latency": sum(self.performance_metrics["latency"])
                / len(self.performance_metrics["latency"]),
                "p90_latency": sorted(self.performance_metrics["latency"])[
                    int(0.9 * len(self.performance_metrics["latency"]))
                ],
                "median_latency": sorted(self.performance_metrics["latency"])[
                    len(self.performance_metrics["latency"]) // 2
                ],
                "throughput": self.pbar.total / (self.finished_time - self.start_time),
            },
        }
        print("All requests completed")
422
423
        print("Performance metrics summary:")
        print(
424
            f"  Total requests: {performance_data['summary']['total_requests']} at {performance_data['summary']['request_rate']} requests per second"
425
        )
426
427
428
        print(f"  Average TTFT: {performance_data['summary']['average_ttft']:.2f}")
        print(f"  P90 TTFT: {performance_data['summary']['p90_ttft']:.2f}")
        print(f"  Median TTFT: {performance_data['summary']['median_ttft']:.2f}")
429
        print(
430
            f"  Average latency: {performance_data['summary']['average_latency']:.2f}"
431
        )
432
433
        print(f"  P90 latency: {performance_data['summary']['p90_latency']:.2f}")
        print(f"  Median latency: {performance_data['summary']['median_latency']:.2f}")
434
        print(
435
            f"  Throughput: {performance_data['summary']['throughput']:.2f} requests per second"
436
        )
Zhiqiang Xie's avatar
Zhiqiang Xie committed
437
        log_to_jsonl_file(performance_data, args.log_file, tag=args.tag)
438
439
440
441
442
443


if __name__ == "__main__":
    args = parse_args()
    flush_cache_url = f"http://{args.host}:{args.port}/flush_cache"

444
445
446
447
448
449
450
451
452
453
454
455
    random.seed(args.seed)
    np.random.seed(args.seed)

    if args.disable_auto_run:
        print("Running with specified request rate...")
        request_rates = [args.request_rate]
    else:
        print("Auto-running with different request rates...")
        request_rates = [16, 14, 12, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

    for rate in request_rates:
        args.request_rate = rate
456
        requests.post(flush_cache_url)
457
        time.sleep(1)
458
        WorkloadGenerator(args).run()