bench_multiturn.py 13.5 KB
Newer Older
1
2
3
4
5
6
7
import argparse
import asyncio
import json
import queue
import random
import threading
import time
8
from datetime import datetime
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from typing import Optional

import aiohttp
import requests
from tqdm.asyncio import tqdm

from sglang.bench_serving import (
    RequestFuncOutput,
    get_tokenizer,
    remove_prefix,
    sample_random_requests,
)


def parse_args():
    parser = argparse.ArgumentParser(
        description="Script to benchmark concurrent requests to a server."
    )
    parser.add_argument(
        "--num-clients",
        type=int,
30
        default=256,
31
32
        help="Number of concurrent clients",
    )
33
34
35
36
37
38
    parser.add_argument(
        "--max-parallel",
        type=int,
        default=128,
        help="Maximum number of parallel requests",
    )
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    parser.add_argument(
        "--request-length",
        type=int,
        default=512,
        help="Length of each new request",
    )
    parser.add_argument(
        "--output-length",
        type=int,
        default=64,
        help="Length of each output",
    )
    parser.add_argument(
        "--num-rounds",
        type=int,
        default=5,
        help="Number of rounds per client",
    )
    parser.add_argument(
        "--distribution",
        type=str,
        default="poisson",
        choices=["poisson", "uniform"],
        help="Distribution type for request intervals (poisson or uniform)",
    )
    parser.add_argument(
        "--request-rate",
        type=float,
        default=1.0,
        help="Average number of requests per second",
    )
    parser.add_argument(
        "--host",
        type=str,
        default="localhost",
        help="Server hostname or IP (default: localhost)",
    )
    parser.add_argument(
        "--port",
        type=int,
        default=30000,
        help="Server port (default: 30000)",
    )
    parser.add_argument(
83
        "--model-path",
84
85
86
87
        type=str,
        default="meta-llama/Llama-3.1-8B-Instruct",
        help="model path compatible with Hugging Face Transformers",
    )
88
89
90
91
92
93
    parser.add_argument(
        "--dataset-path",
        type=str,
        default="",
        help="local dataset to sample tokens from",
    )
94
95
96
97
98
99
    parser.add_argument(
        "--log-file",
        type=str,
        default="performance_metrics.jsonl",
        help="File to log performance metrics",
    )
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    return parser.parse_args()


async def async_request_sglang_generate(
    payload,
    url,
    pbar: Optional[tqdm] = None,
):
    """
    Sends a streaming request to the server. Gathers text token-by-token.
    """
    async with aiohttp.ClientSession() as session:
        headers = {}
        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        output = RequestFuncOutput()

        try:
            async with session.post(url=url, json=payload, headers=headers) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)

                            if data["text"]:
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)

                                most_recent_timestamp = timestamp
                                generated_text = data["text"]

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception as e:
            output.success = False
            output.error = str(e)
            print(f"Request failed: {e}")

    if pbar:
        pbar.update(1)
    return output


def gen_payload(prompt, output_len):
    payload = {
        "text": prompt,
        "sampling_params": {
            "temperature": 0.0,
            "max_new_tokens": output_len,
            "ignore_eos": True,
        },
        "stream": True,
        "lora_path": "",
        "return_logprob": False,
        "logprob_start_len": -1,
    }
    return payload


180
181
182
183
184
185
186
187
188
189
190
191
def log_to_jsonl_file(data, file_path="performance_metrics.jsonl"):
    """Append the data with a timestamp to the specified JSONL file."""
    timestamped_data = {"timestamp": datetime.now().isoformat(), **data}
    try:
        with open(file_path, "a") as file:
            file.write(
                json.dumps(timestamped_data) + "\n"
            )  # Write as a single line in JSONL format
    except IOError as e:
        print(f"Error writing to JSONL file: {e}")


192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
class ReadyQueue:
    """
    Thread-safe queue that can pop requests in different orders based on given policy.
    """

    def __init__(self, init_requests=None, policy="random"):
        self.lock = threading.Lock()
        self.requests = init_requests or []
        self.policy = policy

    def append(self, item):
        with self.lock:
            self.requests.append(item)

    def pop(self):
        with self.lock:
            if not self.requests:
                return None
            if self.policy == "random":
                index = random.randrange(len(self.requests))
                return self.requests.pop(index)
            elif self.policy == "fifo":
                return self.requests.pop(0)
            else:
                # todo, varying thinking time of clients
                raise ValueError(f"{self.policy} not implemented")


class WorkloadGenerator:
    def __init__(self, args):
        # Construct the base URL for requests
        self.url = f"http://{args.host}:{args.port}/generate"

225
        self.tokenizer = get_tokenizer(args.model_path)
226
227
228
229
230
        self.distribution = args.distribution
        self.request_rate = args.request_rate
        self.start_time = None
        self.finished_time = None

231
232
233
        self.sent_requests = 0
        self.completed_requests = 0

234
235
236
237
238
239
        self.candidate_inputs = sample_random_requests(
            input_len=args.request_length,
            output_len=args.output_length,
            num_prompts=args.num_clients * args.num_rounds,
            range_ratio=1.0,
            tokenizer=self.tokenizer,
240
            dataset_path=args.dataset_path,
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        )
        self.candidate_inputs = [i[0] for i in self.candidate_inputs]

        init_requests = [
            (i, gen_payload(self.candidate_inputs[i], args.output_length))
            for i in range(args.num_clients)
        ]
        self.client_records = {
            i: {"round": 0, "history": init_requests[i][1]["text"]}
            for i in range(args.num_clients)
        }
        self.ready_queue = ReadyQueue(init_requests=init_requests)
        self.candidate_inputs = self.candidate_inputs[args.num_clients :]

        self.response_queue = queue.Queue()
        self.pbar = tqdm(total=args.num_clients * args.num_rounds)
        self.performance_metrics = {"ttft": [], "latency": []}

    async def handle_request(self, item):
        try:
            client_id, payload = item
            response = await async_request_sglang_generate(payload, self.url, self.pbar)
            if self.pbar.n == self.pbar.total:
                self.finished_time = time.time()
            self.response_queue.put((client_id, response))
        except Exception as e:
            print(f"Request failed: {e}")

    def request_sender(self):
        async def request_loop():
            while True:
272
273
274
275
276
277
278
279
280
281
282
283
                if self.sent_requests - self.completed_requests < args.max_parallel:
                    new_request = self.ready_queue.pop()
                    if new_request:
                        asyncio.create_task(self.handle_request(new_request))
                        self.sent_requests += 1
                else:
                    await asyncio.sleep(0.05)
                    continue

                if self.pbar.n == self.pbar.total:
                    break

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
                # Calculate Poisson-distributed wait time
                if self.distribution == "poisson":
                    sleep_time = random.expovariate(self.request_rate)
                elif self.distribution == "uniform":
                    avg_interval = (
                        1.0 / self.request_rate if self.request_rate > 0 else 1.0
                    )
                    sleep_time = random.uniform(0, 2 * avg_interval)
                else:
                    raise ValueError("Invalid distribution type")
                await asyncio.sleep(sleep_time)  # Wait before sending the next request

        # Create and run the event loop for asynchronous requests
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        loop.run_until_complete(request_loop())
        loop.close()

    def response_handler(self):
        while True:
            try:
                client_id, response = self.response_queue.get(
                    timeout=10
                )  # Block until response is available
                if not response.success:
                    raise ValueError(f"Request failed with error: {response.error}")
                self.client_records[client_id]["history"] += response.generated_text
                self.client_records[client_id]["round"] += 1
                self.performance_metrics["ttft"].append(response.ttft)
                self.performance_metrics["latency"].append(response.latency)
314
                self.completed_requests += 1
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

                if self.client_records[client_id]["round"] < args.num_rounds:
                    self.client_records[client_id][
                        "history"
                    ] += self.candidate_inputs.pop()
                    self.ready_queue.append(
                        (
                            client_id,
                            gen_payload(
                                self.client_records[client_id]["history"],
                                args.output_length,
                            ),
                        )
                    )
            except queue.Empty:
                if self.pbar.n == self.pbar.total:
                    break

    def run(self):
        request_thread = threading.Thread(target=self.request_sender, daemon=True)
        response_thread = threading.Thread(target=self.response_handler, daemon=True)

        self.start_time = time.time()
        request_thread.start()
        response_thread.start()

        request_thread.join()
        response_thread.join()
        self.pbar.close()
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

        performance_data = {
            "summary": {
                "total_requests": len(self.performance_metrics["ttft"]),
                "request_rate": self.request_rate,
                "average_ttft": sum(self.performance_metrics["ttft"])
                / len(self.performance_metrics["ttft"]),
                "p90_ttft": sorted(self.performance_metrics["ttft"])[
                    int(0.9 * len(self.performance_metrics["ttft"]))
                ],
                "median_ttft": sorted(self.performance_metrics["ttft"])[
                    len(self.performance_metrics["ttft"]) // 2
                ],
                "average_latency": sum(self.performance_metrics["latency"])
                / len(self.performance_metrics["latency"]),
                "p90_latency": sorted(self.performance_metrics["latency"])[
                    int(0.9 * len(self.performance_metrics["latency"]))
                ],
                "median_latency": sorted(self.performance_metrics["latency"])[
                    len(self.performance_metrics["latency"]) // 2
                ],
                "throughput": self.pbar.total / (self.finished_time - self.start_time),
            },
        }
        print("All requests completed")
369
370
        print("Performance metrics summary:")
        print(
371
            f"  Total requests: {performance_data['summary']['total_requests']} at {performance_data['summary']['request_rate']} requests per second"
372
        )
373
374
375
        print(f"  Average TTFT: {performance_data['summary']['average_ttft']:.2f}")
        print(f"  P90 TTFT: {performance_data['summary']['p90_ttft']:.2f}")
        print(f"  Median TTFT: {performance_data['summary']['median_ttft']:.2f}")
376
        print(
377
            f"  Average latency: {performance_data['summary']['average_latency']:.2f}"
378
        )
379
380
        print(f"  P90 latency: {performance_data['summary']['p90_latency']:.2f}")
        print(f"  Median latency: {performance_data['summary']['median_latency']:.2f}")
381
        print(
382
            f"  Throughput: {performance_data['summary']['throughput']:.2f} requests per second"
383
        )
384
        log_to_jsonl_file(performance_data, args.log_file)
385
386
387
388
389
390


if __name__ == "__main__":
    args = parse_args()
    flush_cache_url = f"http://{args.host}:{args.port}/flush_cache"

391
    for request_rate in [16, 14, 12, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]:
392
393
        args.request_rate = request_rate
        requests.post(flush_cache_url)
394
        time.sleep(1)
395
        WorkloadGenerator(args).run()